【摘要】2二次函數的圖象與性質第1課時【基礎梳理】二次函數y=x2與y=-x2的圖象與性質函數y=x2y=-x2圖象開口方向__________向上向下函數y=x2y=-x2頂點坐標______________對稱軸y軸y軸函數變化當x&g
2025-06-12 12:36
【摘要】第二章二次函數導入新課講授新課當堂練習課堂小結第2課時商品利潤最大問題二次函數的應用學習目標利潤問題.(重點)值范圍.(難點)導入新課情境引入短片中,賣家使出渾身解數來賺錢.商品買賣過程中,作為商家利潤最大化是永恒的追求.如果你是商家
2025-06-14 03:00
【摘要】第二章二次函數本專題包括求圖形面積的最值問題、求拋物線形運動問題、求拋物線形建筑物問題、求銷售中最大利潤問題,是中考??嫉念}型,特別是利潤問題,是近年考查的熱點題型.類型1求面積(體積)的最值問題1.如圖,有一塊邊長為6cm的正三角形紙板,在它的三個角處分別截去一個彼此全等的箏形,再沿圖中的虛線折起,做成一個無蓋的
2025-06-12 00:36
2025-06-14 02:05
【摘要】第二章二次函數二次函數的圖象與性質知識點1二次函數y=ax2+bx+c(a≠0)的對稱軸及頂點坐標y=-3x2-6x+5的圖象的頂點坐標是(A)A.(-1,8)B.(1,8)C.(-1,2)D.(1,-4),函數h=(t的單位:s,h的單位:m)可以描述他跳躍時重心高
2025-06-18 00:31
【摘要】第二章二次函數二次函數的圖象與性質知識點1二次函數y=a(x-h)2(a≠0)的圖象與性質y=-2(x-3)2的頂點坐標和對稱軸分別是(B)A.(-3,0),直線x=-3B.(3,0),直線x=3C.(0,-3),直線x=-3D.(0,3),直線x=-3
2025-06-18 00:39
【摘要】二次函數的應用第二章二次函數導入新課講授新課當堂練習課堂小結第1課時圖形面積的最大值九年級數學下(BS)教學課件學習目標.(難點)..(重點)導入新課復習引入寫出下列拋物線的開口方向、對稱軸和頂點坐標.
2025-06-19 07:17
【摘要】3確定二次函數的表達式【基礎梳理】確定二次函數表達式的一般方法已知條件選用表達式的形式頂點和另一點的坐標_______二次函數各項系數中的一個和兩點的坐標_______三個點的坐標_______頂點式一般式一般式【自我診斷】1.(1)確定二次函數的表達式一般需要三個條件.(
2025-06-14 06:48
【摘要】3確定二次函數的表達式..二次函數解析式有哪幾種表達方式?一般式:y=ax2+bx+c頂點式:y=a(x-h)2+k如何求二次函數的解析式?已知二次函數圖象上三個點的坐標,可用待定系數法求其解析式.交點式:y=a(x-x1)(x-x2)解析:設所求的二次函數為y=ax2+bx+c,由條件得:
2025-06-15 03:00
【摘要】4二次函數的應用第二章二次函數課堂達標素養(yǎng)提升第二章二次函數第2課時最大利潤問題課堂達標一、選擇題第2課時最大利潤問題1.若一種服裝的銷售利潤y(萬元)與銷售數量x(萬件)之間滿足函數表達式y(tǒng)=-2x2+4x+5,則盈利的最值情況為()A.有最
2025-06-20 16:00
2025-06-15 02:54
2025-06-12 13:43
【摘要】4二次函數y=ax2+bx+c的圖象第2課時,第一頁,編輯于星期六:七點九分。,2.能夠利用二次函數的對稱軸和頂點坐標公式解決一些數學問題.,1.經歷探索y=ax2+bx+c的圖象特征,會用配方法求其...
2024-10-21 21:48
【摘要】北師大版九年級下冊數學情境導入某超市有一種商品,進價為2元,據市場調查,銷售單價是13元時,平均每天銷售量是50件,而銷售價每降低1元,平均每天就可以多售出10件.若設降價后售價為x元,每天利潤為y元,則y與x之間的函數關系是怎樣的?本節(jié)目標T恤衫銷售過程中最大利潤等問題的過程,體會二次函數是一類最優(yōu)化問題的數學模型
2025-06-20 17:31
【摘要】北師大版九年級下冊數學20)yaxbxca????二次函數(24,)4acba?b頂點坐標為(-2a244acba?①當a0時,y有最小值=②當a0時,y有最大值=244acba?二次函數的最值求法情境導入