【摘要】二、數列的有關概念四、收斂數列的性質五、小結思考題三、數列極限的定義第一節(jié)數列的極限一、引例“割之彌細,所失彌少,割之又割,以至于不可割,則與圓周合體而無所失矣”1.割圓術:播放——劉徽一、引例R正六邊形的面積1A正十二邊形的面積2A????正
2025-08-21 12:40
【摘要】1§復變函數的極限與連續(xù)一、復變函數二、復變函數的極限三、復變函數的連續(xù)性2一、復變函數x實變量,()yfx?為實變函數,可用平面上的一條曲線表示一個實變函數.x的值一旦確定,y只有一個數和它對應.高等數學中的實變函數,都是單值函數.
2025-08-01 17:37
【摘要】一、六個基本積分二、待定系數法舉例三、小結第四節(jié)有理函數的積分有理函數的定義:兩個多項式的商表示的函數稱之為有理函數.mmmmnnnnbxbxbxbaxaxaxaxQxP?????????????11101110)()(??其中m、n
2025-08-21 12:39
【摘要】2022/2/131作業(yè)P34習題3(2)(3).P39習題1(2)(3).2(2)(6)(9)(13).3(1)預習:P40—492022/2/132第二講函數極限一、函數極限二、函數極限的性質三、函數極限的運算法則四、兩個重要極限
2025-01-16 06:19
【摘要】一、二元函數的極限定義設二元函數f(P)在區(qū)域有定義,是D的聚點.若(或
2025-01-20 02:02
【摘要】第一篇:二元函數的極限與連續(xù) §二元函數的極限與連續(xù) 定義 設二元函數有意義,若存在常數A,都有 則稱A是函數當點趨于點 或 或 趨于點時的極限,記作。的方式無關,即不,當(即)時,在點...
2025-10-29 05:30
【摘要】第二節(jié)二元函數的極限與連續(xù)性一、二元函數的極限二、二元函數的連續(xù)性三、總結定義1設函數),(yxfz?在),(0??pN內有定義,),(yxP是),(0??pN內的任意一點,如果存在一個確定的常數A,點),(yxP以任何方式趨向于定點),(000y
2025-07-26 01:41
【摘要】AP微積分之利用微分求導數 AP微積分作為美國大學一年級的數學課,大部分高中都會都接觸微積分,并且我國高中的數學要求高于美國。所以小編建議學習AP微積分建議跟老師學習,因為它畢竟是一門課程?! ??AP微積分課程的三大基本功:求極限,求導數,求積分?! ??在導數這一部分,高中階段普遍使用導數規(guī)則來求。但是當同學們學到多元微積分之后,更為有力的工具是全微分,因為它是一次施
2025-08-04 10:38
【摘要】曲率是描述曲線局部性質(彎曲程度)的量。1M3M2??2M2S?1S?MM?1S?2S?NN???弧段彎曲程度越大,轉角越大.轉角相同,弧段越短,彎曲程度越大一、平面曲線的曲率概念1??第十一節(jié)曲線的曲率??????S?S)?.M?.MC0Myxo.s
2025-04-21 04:19
【摘要】......一、函數、極限、連續(xù)重要概念公式定理(一)數列極限的定義與收斂數列的性質數列極限的定義:給定數列,如果存在常數,對任給,存在正整數,使當時,恒有,則稱是數列的當趨于無窮時的極限,或稱數列收斂于,,則稱數列發(fā)散.收斂數
2025-06-16 04:04
【摘要】第四節(jié)基本初等函數與初等函數一、冪函數二、指數函數與對數函數三、三角函數與反三角函數四、初等函數五、小結思考題一、冪函數(powerfunctions)冪函數)(是常數???xyoxy)1,1(112xy?xy?xy1?xy?xay?xay)1(?)
2025-08-21 12:43
【摘要】函數的極限及函數的連續(xù)性一、重點難點分析: ① 此定理非常重要,利用它證明函數是否存在極限。 ?、谝莆粘R姷膸追N函數式變形求極限?! 、酆瘮礷(x)在x=x0處連續(xù)的充要條件是在x=x0處左右連續(xù)。 ?、苡嬎愫瘮禈O限的方法,若在x=x0處連續(xù),則?! 、萑艉瘮翟赱a,b]上連續(xù),則它在[a,b]上有最大值,最小值?! 《?/span>
2025-05-16 07:45
【摘要】函數的極限、函數的連續(xù)性1、函數極限的定義:(1)當自變量x取正值并且無限增大時,如果函數f(x)無限趨近于一個常數a,就說當x趨向于正無窮大時,函數f(x)的極限是a記作:f(x)=a,或者當x→+∞時,f(x)→a(2)當自變量x取負值并且絕對值無限增大時,如果函數f(x)無限趨近于一個常數a,就說當x趨向于負
2025-10-29 00:41
【摘要】復合函數求導法則例4設。解
2025-01-15 15:12
【摘要】天津大學繼續(xù)教育學院1第一章一元函數微積分概述天津大學繼續(xù)教育學院2函數極限連續(xù)天津大學繼續(xù)教育學院3初等函數?定義在某個變化過程中,有兩個變量x和y,D是非空的實數集,如果對于每一個x∈D,按某一對應法則f,變量y都有唯一確定的值與它對應,則稱y是x的函數
2025-08-05 20:07