【摘要】線性代數(shù)教材:鄭寶東主編.線性代數(shù)與空間解析幾何.高等教育出版社,北京,2022參考書(shū):[1]同濟(jì)大學(xué)數(shù)學(xué)教研室編.線性代數(shù)(第六版).高等教育出版社.2022年[2]趙連偶,劉曉東.線性代數(shù)與幾何(面向21世紀(jì)課程教材).高等教育出版社[3]居余馬等.線性代數(shù).清華大學(xué)出版社第一章n階行列式
2025-08-05 16:28
【摘要】第1頁(yè)數(shù)學(xué)(理)新課標(biāo)·高考二輪總復(fù)習(xí)第四部分選考內(nèi)容第2頁(yè)數(shù)學(xué)(理)新課標(biāo)·高考二輪總復(fù)習(xí)第三十一講行列式與矩陣(選修4-2)第3頁(yè)數(shù)學(xué)(理)新課標(biāo)·高考二輪總復(fù)習(xí).2.求常
2025-05-07 00:51
【摘要】571上次課復(fù)習(xí)一、行列式的性質(zhì)及其推論性質(zhì)1行列式轉(zhuǎn)置,其值不變.571266853266853?根據(jù)性質(zhì)1,行所具有的性質(zhì)列也同樣具有.交換行列式的兩行,其值變號(hào).(列)性質(zhì)2推論如果行列式中有兩行(列)對(duì)應(yīng)元素相同,則此行列式為零.性質(zhì)3用數(shù)
2025-04-29 06:43
【摘要】任課教師:楊坤一聯(lián)系方式:E-mail:辦公室:四教西3051、基因間“距離”的表示線性代數(shù)的應(yīng)用舉例2、Euler的四面體問(wèn)題3、動(dòng)物數(shù)量的按年齡預(yù)測(cè)問(wèn)題4、企業(yè)投入產(chǎn)出分析模型?2022年考研數(shù)學(xué)大綱?數(shù)學(xué)一、二、三數(shù)學(xué):?線性代數(shù)(22%);?高等數(shù)學(xué)
2025-01-15 07:37
【摘要】,312213332112322311322113312312332211aaaaaaaaaaaaaaaaaa??????333231232221131211aaaaaaaaa例如??3223332211aaaaa????3321312312aaaaa????3122322113aaaaa??33312321
2025-05-10 10:27
【摘要】§2行列式的性質(zhì)與計(jì)算§1行列式的定義§3行列式展開(kāi)定理、克拉默法則第一章行列式§3行列式展開(kāi)定理、克拉默法則一、余子式、代數(shù)余子式二、行列式按一行(列)展開(kāi)法則三、克拉默法則§3行列式的展開(kāi)定理引例,312213332112322
2025-05-07 00:52
【摘要】行列式和矩陣---《線性代數(shù)》線性代數(shù)起源于處理線性關(guān)系問(wèn)題,它是代數(shù)學(xué)的一個(gè)分支,形成于20世紀(jì),但歷史卻非常久遠(yuǎn),部分內(nèi)容在東漢初年成書(shū)的《九章算術(shù)》里已有雛形論述,不過(guò)直到18—19世紀(jì)期間,隨著研究線性方程組和變量線性變換問(wèn)題的深入,才先后產(chǎn)生了行列式和矩陣的概念,為處理線性問(wèn)題提供了強(qiáng)有力的理論工具,并推動(dòng)了線性代數(shù)的
2025-01-15 05:50
【摘要】行列式的計(jì)算是高等代數(shù)中的難點(diǎn)、重點(diǎn),特別是高階行列式的計(jì)算,學(xué)生在學(xué)習(xí)過(guò)程中,普遍存在很多困難,難于掌握計(jì)算高階行列式的方法很多,但具體到一個(gè)題,要針對(duì)其特征,選取適當(dāng)?shù)姆椒ㄇ蠼?。方?定義法00020000001999002022000001??????????利用
【摘要】§一.行列式的定義1.二階行列式與三階行列式2.n階行列式二.行列式的性質(zhì)三.行列式按行(列)展開(kāi)定理及其推論四.方陣乘積的行列式五.克萊姆法則用消元法解二元線性方程組???????.,22221211212111bxaxabxaxa??1??2
【摘要】第二章矩陣運(yùn)算和行列式§矩陣及其運(yùn)算一.矩陣與向量1.m?n矩陣元素:aij(i=1,…,m,j=1,…,n)?§§§§a11a12…a1na21a22…a2n…………am1
2025-04-29 03:05
【摘要】行列式按行(列)展開(kāi)?對(duì)角線法則只適用于二階與三階行列式.?本節(jié)主要考慮如何用低階行列式來(lái)表示高階行列式.一、引言122331111221221333332132132231112332aaaaaaaaaaaaaaaaaa??????1
【摘要】行列式的計(jì)算方法行列式的計(jì)算是高等代數(shù)中的難點(diǎn)、重點(diǎn),特別是高階行列式的計(jì)算,學(xué)生在學(xué)習(xí)過(guò)程中,普遍存在很多困難,難于掌握計(jì)算高階行列式的方法很多,但具體到一個(gè)題,要針對(duì)其特征,選取適當(dāng)?shù)姆椒ㄇ蠼?。方?定義法利用n階行列式的定義計(jì)算行列式,此法適用于0比較多的行列式。00020000
【摘要】EXCEL的矩陣運(yùn)算例:x=(ATA)-1ATb已知資料(結(jié)果)位置選擇『函數(shù)類別』及『函數(shù)名稱』(可利用『說(shuō)明』來(lái)查“MMULT”的詳細(xì)用法),輸入“TRANSPOSE(“因?yàn)锳T是一反矩陣,必須先用反矩陣功能轉(zhuǎn)換,以選擇矩陣範(fàn)圍(也可以直接輸入)。.A範(fàn)圍
2025-08-05 08:58
【摘要】行列式與矩陣n階行列式的概念行列式的性質(zhì)與計(jì)算Cramer法則第六章矩陣及其計(jì)算逆矩陣與矩陣的秩分塊矩陣矩陣的初等變換n階行列式第一節(jié)學(xué)習(xí)重點(diǎn)余子式與代數(shù)余子式的概念n階行列式的概念●行列式的引入引
2024-10-16 21:34
【摘要】§行列式的基本性質(zhì)第二章行列式直接用定義計(jì)算行列式是很麻煩的事,本節(jié)要導(dǎo)出行列式運(yùn)算的一些性質(zhì),利用這些性質(zhì),將使行列式的計(jì)算大為簡(jiǎn)化。轉(zhuǎn)置行列式:把n階行列式111212122212nnnnnnaaaaaaDaaa?的第i行變?yōu)榈趇
2025-08-11 12:05