【摘要】第一篇:相似三角形教案 相似三角形 【基礎知識精講】 1.理解相似三角形的意義,會利用定理判定兩個三角形相似,并能掌握相似三角形與全等三角形的關系. 2.進一步體會數(shù)學內(nèi)容之間的內(nèi)在聯(lián)系,初步...
2024-10-29 06:48
【摘要】問題1:相似三角形的有關概念(1).三個角對應_____、三條邊對應_______的兩個三角形叫做相似三角形(2).相似三角形的對應角_____,對應邊________.(3).相似比等于____的兩個三角形全等.相等成比例相等成比例1一、復習提問相似三角形的識別問:除定義之外,相似
2024-11-24 13:48
【摘要】相似三角形的判定定理:定理1:兩角對應相等,兩三角形相似。定理2:兩邊對應成比例且夾角相等,兩三角形相似。定理3:三邊對應成比例,兩三角形相似。∠A=∠A'∠B=∠B'△ABC∽△A'B'C'??△ABC∽△A'B'C'△ABC∽
2024-11-09 05:43
【摘要】一、下列各題有“病”嗎?如果有“病”,請寫出“病因”,沒有解答的,請你解答,并寫出你認為易讓別人犯錯的“陷阱”在哪兒?1:如圖1,要ΔADB∽ΔABC,那么還應增加的條件是_________.ACBD2:已知:如圖2,在□ABCD中,點E為邊CD上的一點,AE的延長線交BC的延長線于點F,請你寫出圖中的
2024-11-24 14:14
【摘要】第一部分相似三角形知識要點大全知識點1..相似圖形的含義把形狀相同的圖形叫做相似圖形。(即對應角相等、對應邊的比也相等的圖形)解讀:(1)兩個圖形相似,其中一個圖形可以看做由另一個圖形放大或縮小得到.(2)全等形可以看成是一種特殊的相似,即不僅形狀相同,大小也相同.(3)判斷兩個圖形是否相似,就
2025-06-25 03:22
【摘要】相似三角形相似三角形?相似三角形的概念?相似三角形的基本性質(zhì)?相似三角形的預備定理兩幅形狀相同大小不等的長城的圖片是相似的。ABCDEF△ABC與△DEF三個角對應相等,三條邊對應成比例的兩個三角形,做相似三角形(similartrianglec)AB
【摘要】相似三角形復習(2)△ABC中,P是AB上一點,連接CP,以下條件不能判定△ACP∽△ABC的是()A∠ACP=∠BB∠APC=∠ACBCAC2=AP·ABDAC:CP=AB:BCABCP2、如圖,D、E分別是AB、AC上兩點,CD與BE相
2024-11-09 12:54
【摘要】第1頁共2頁七年級三角形的線與角專題三角形常用模型一、單選題(共5道,每道20分),△ABC中,AD⊥BC,垂足為D,AE是∠BAC的平分線,∠C=77°,∠B=43°,則∠DAE=()°°°°
2025-08-12 20:23
【摘要】相似三角形知識點總結(jié)知識點1、三角對應相等,三邊對應成比例的三角形叫相似三角形。如△ABC與△A/B/C/相似,記作:△ABC∽△A/B/C/。相似三角形的比叫相似比相似三角形的定義既是相似三角形的性質(zhì),也是三角形相似的判定方法。注意:(1)相似比是有順序的。(2)對應性,兩個三角形相似時,通常把對應頂點寫在對應位置,這樣寫比較容易找到相似三角形的對應角和對應邊
2025-05-09 22:06
【摘要】專業(yè)資料分享相似三角形中的輔助線在添加輔助線時,所添加的輔助線往往能夠構(gòu)造出一組或多組相似三角形,或得到成比例的線段或得出等角,等邊,從而為證明三角形相似或進行相關的計算找到等量關系。主要的輔助線有以下幾種:一、作平行線例1.如圖,的AB邊和AC邊上各取一點D和E,且使AD=
2025-05-16 12:02
【摘要】學校( 九?。┠昙墸ā?shù)學?。W案主備教師:審核人:日期:累計課時課題第周第課時課型新授課學習目標與重難點學習目標:.“平行線分線段成比例定理”、“平行出相似”定理。重點:“平行線分線段成比例定理”、“平行出相似”定理。難點:“平行線分線段成比例定理”、“平行出相似”定理。一、復習引入1、相似
2025-08-18 16:45
【摘要】相似三角形一.選擇題1.如圖,D、E分別是AB、AC上兩點,CD與BE相交于點O,下列條件中不能使△ABE和△ACD相似的是( ?。〢.∠B=∠C B.∠ADC=∠AEB C.BE=CD,AB=AC D.AD:AC=AE:AB2.如圖,△ACD和△ABC相似需具備的條件是( ?。〢. B. C.AC2=AD?AB
2025-08-05 10:51
【摘要】精品資源相似三角形系列練習、乙兩個形狀相同(相似)的三角形框架,已知三角形框架甲的三邊分別為50cm、60cm、80cm,三角形框架乙的一邊長為20cm,那么符合條件的三角形框架乙共有(),在△ABC中,AB=AC,AD是中線,P是AD上一點,過C作CF∥AB,延長BP交AC于點E,交CF于點F,試說明BP2=PE·PF.
2025-08-04 04:54
【摘要】......相似三角形的應用一.選擇題(共8小題)1.如圖,在同一時刻,,一棵大樹的影長為5米,則這棵樹的高度為( ?。〢. B. C. D.2.如圖,小明在A時測得某樹的影長為1m,B時又測得該樹的影長為4
2025-06-28 20:00
【摘要】......相似三角形的常見題型【知識要點】1.如何選擇相似三角行判定定理:①已知一個角對應相等的,常用(兩角型或夾角與一組對應邊成比例)②已知一組對邊成比例的,常用(夾角與一組對應邊成比例)③只知道邊
2025-03-25 06:31