【摘要】《常微分方程》自學(xué)指導(dǎo)書一、課程編碼、適用專業(yè)及教材課程編碼:110621211總學(xué)時:90學(xué)時,其中面授學(xué)時:28學(xué)時,自學(xué)學(xué)時:62學(xué)時。適用專業(yè):數(shù)學(xué)與應(yīng)用數(shù)學(xué)專業(yè)(函授本科)使用教材:王高雄等編,常微分方程,高等教育出版社(第二版),1983.9。二、課程性質(zhì)常微分方程科程是高等院校數(shù)學(xué)專業(yè)在數(shù)學(xué)分析和高等代數(shù)基礎(chǔ)上繼續(xù)深入和發(fā)展的一門
2024-10-04 15:52
【摘要】常微分方程課程教學(xué)大綱(OrdinaryDifferentialEquation)課程性質(zhì):學(xué)科基礎(chǔ)課適用專業(yè):信息與計算科學(xué)先修課程:數(shù)學(xué)分析、高等代數(shù)、普通物理后續(xù)課程:微分方程數(shù)值解總學(xué)分:3教學(xué)目的與要求:微分方程是數(shù)學(xué)理論聯(lián)系實際的重要渠道之一,也是其它數(shù)學(xué)分支的一個綜合應(yīng)用場所,我們所研究的方程多數(shù)是由其它學(xué)科(如物理、氣象、生態(tài)學(xué)、經(jīng)濟學(xué))推
2025-08-22 20:44
【摘要】第十二章常微分方程(A)一、是非題1.任意微分方程都有通解。()2.微分方程的通解中包含了它所有的解。()3.函數(shù)是微分方程的解。()4.函數(shù)是微分方程的解。()5.微分方程的通解是(為任意常數(shù))。()6.是一階線性微分方程。()7.不是一階線性微分方程。()8.的特征方程為。()
2025-06-24 15:07
【摘要】02412—0202412—03=是方程組x=x,x=,在任何不包含原點的區(qū)間a上的基解矩陣。解:令的第一列為(t)=,這時(t)==(t)故(t)是一個解。同樣如果以(t)表示第二列,我們有(t)==(t)這樣(t)也是一個解。因此是解矩陣。又因為det=-t故是基解矩陣。=A(t)x()其中A(t)是區(qū)間a上的連續(xù)nn矩陣,它的元素為a(t),
2025-06-24 15:00
【摘要】常微分方程自學(xué)習(xí)題及答案一填空題:1一階微分方程的通解的圖像是維空間上的一族曲線.2二階線性齊次微分方程的兩個解y1(x);y2(x)為方程的基本解組充分必要條件是________.3方程的基本解組是_________.4一個不可延展解的存在區(qū)間一定是___________區(qū)間.5方程的常數(shù)解是________.6
2025-03-25 01:12
【摘要】第一節(jié)微分方程的概念第二節(jié)常見的一階微分方程第三節(jié)高階微分方程第四節(jié)歐拉方程第五節(jié)微分方程的應(yīng)用第六節(jié)差分方程簡介微分方程簡介?方程:線性方程、二次方程、高次方程、指數(shù)方程、對數(shù)方程、三角方程和方程組等。?用微積分描述運動,便得到微分方程。例如描述物質(zhì)在一定條件下的運動變化規(guī)律;
2025-01-19 12:01
【摘要】第三章存在和唯一性定理一.[內(nèi)容提要]本章主要介紹解的存在和唯一性定理、,學(xué)過這一定理之后,對于微分方程的通解概念,才由形式上的理解轉(zhuǎn)為實質(zhì)上的理解;另外在求近似解之前,都必須從理論上做解的存在唯一性判定.關(guān)于解的延伸定理,它把解的存在唯一性定理所得到的、具有局部性的結(jié)果,,都是很有意義的.二.[關(guān)鍵詞]存在和唯一性,解的延伸,畢卡逐次逼近法三.[目的和要求]
2025-06-29 11:50
【摘要】習(xí)題2-41.求解下列微分方程:(1)yxxyy????22;解:令uxy?,則原方程化為uuudxdux????212,即xdxduuu???122,積分得:cxuuu??????ln1ln2111ln2還原變量并化簡得:3)()(yxcxy???(2)
2025-01-10 04:03
【摘要】用分離變量法解常微分方程.1直接可分離變量的微分方程=()的方程,稱為變量分離方程,這里,分別是的連續(xù)函數(shù).如果(y)≠0,我們可將()改寫成=,這樣,變量就“分離”,得到 通解:=+c. ()其中,c表示該常數(shù),,分別理解為,()()的解.例1求解方程的通解.解:(1)變形且分離變量:(2)兩邊積分:,得.
2025-07-25 08:19
【摘要】數(shù)計學(xué)院系級班姓名__學(xué)號_任課教師審題人……………………………………………………………密…………………………封…………………………線……………………………………………(A)試卷份數(shù)
2025-06-24 06:00
【摘要】本章重點講述:A線性微分方程的基本理論;B常系數(shù)線性方程的解法;C某些高階方程的降階和二階方程的冪級數(shù)解法。對于二階及二階以上的微分方程的解包括基本理論和求解方法。這部分內(nèi)容有兩部分:1、線性微分方程(組):在第四、五章討論
2024-10-19 17:11
【摘要】常微分方程課程簡介常微分方程是研究自然科學(xué)和社會科學(xué)中的事物、物體和現(xiàn)象運動、演化和變化規(guī)律的最為基本的數(shù)學(xué)理論和方法。物理、化學(xué)、生物、工程、航空航天、醫(yī)學(xué)、經(jīng)濟和金融領(lǐng)域中的許多原理和規(guī)律都可以描述成適當(dāng)?shù)某N⒎址匠?,如牛頓運動定律、萬有引力定律、機械能守恒定律,能量守恒定律、人口發(fā)展規(guī)律、生態(tài)種群競爭、疾病傳染、遺傳基因變異、股票的漲伏趨勢、利
2025-08-01 13:03
【摘要】2021/6/17常微分方程§微分方程的降階和冪級數(shù)解法2021/6/17常微分方程一、可降階的一些方程類型n階微分方程的一般形式:0),,,,()('?nxxxtF?1不顯含未知函數(shù)x,或更一般不顯含未知函數(shù)及其直到k-1(k1)階導(dǎo)數(shù)的方程是)(0),,,,()()1()(??
2025-05-11 05:30
【摘要】目錄上頁下頁返回結(jié)束第五章線性微分方程組前面幾章研究了只含一個未知函數(shù)的一階或高階方程,但在許多實際的問題和一些理論問題中,往往要涉及到若干個未知函數(shù)以及它們導(dǎo)數(shù)的方程所組成的方程組,即微分方程組,本章將介紹一階微分方程組的一般解法,重點仍在線性方程組的基本理論和常系數(shù)線性方程的解法上.
2025-01-20 04:56
【摘要】1.=2xy,并滿足初始條件:x=0,y=1的特解。解:=2xdx兩邊積分有:ln|y|=x+cy=e+e=cex另外y=0也是原方程的解,c=0時,y=0原方程的通解為y=cex,x=0y=1時c=1特解為y=e.2.ydx+(x+1)dy=0并求滿足初始條件:x=0,y=1的特解。解:ydx=-(x+1)dydy=-dx兩邊積分
2025-06-18 13:01