【總結(jié)】1.均值不等式法例1設(shè)求證例2已知函數(shù),若,且在[0,1]上的最小值為,求證:例3求證.例4已知,,求證:≤1.2.利用有用結(jié)論例5求證例6已知函數(shù)求證:對(duì)任意且恒成立。例7已知用數(shù)學(xué)歸納法證明;對(duì)對(duì)都成立,證明(無(wú)理數(shù))例8已知不等式。表示不超過(guò)的最大整數(shù)。設(shè)正數(shù)數(shù)列滿足:求證再如:設(shè)函數(shù)。(Ⅰ)
2025-08-11 11:16
【總結(jié)】2018屆高三第一輪復(fù)習(xí)【21】-數(shù)列極限與數(shù)學(xué)歸納法一、知識(shí)梳理:1.?dāng)?shù)學(xué)歸納法(1)由一系列有限的特殊事例得出一般結(jié)論的推理方法,通常叫歸納法,它能幫助我們發(fā)現(xiàn)一般規(guī)律;觀察、歸納、猜想、證明,是發(fā)現(xiàn)數(shù)學(xué)規(guī)律的完整過(guò)程,其中證明是指用數(shù)學(xué)歸納法證明.(2)應(yīng)用數(shù)學(xué)歸納法有兩個(gè)步驟:①證明當(dāng)取第一個(gè)時(shí)結(jié)論正確;②假設(shè)當(dāng)()時(shí),結(jié)論正確,證明當(dāng)時(shí),結(jié)論成立.這兩步缺一不可,
2025-04-17 13:02
【總結(jié)】主講老師:數(shù)列、等差數(shù)列復(fù)習(xí)知識(shí)框架圖數(shù)列一般數(shù)列特殊函數(shù)——等差數(shù)列通項(xiàng)公式遞推公式圖象法定義等差中項(xiàng)通項(xiàng)公式前n項(xiàng)和公式性質(zhì)定義分類基本概念基本題型題型一:求數(shù)列通項(xiàng)公式的問(wèn)題例1.已知數(shù)列{an}的首項(xiàng)a1=1,其遞推
2025-10-31 08:45
【總結(jié)】數(shù)列與不等式專題七n數(shù)列與不等式的綜合題是高考常見(jiàn)的試題.這類試題,對(duì)數(shù)列方面的考查多屬基礎(chǔ)知識(shí)和基本技能的層級(jí),而對(duì)不等式的考查,其口徑往往比較寬,難度的調(diào)控幅度比較大,有時(shí)達(dá)到很高的層級(jí).試題
2025-11-02 08:49
【總結(jié)】數(shù)列通項(xiàng)的求法一、公式法二、迭加法若an+1=an+f(n),則:若an+1=f(n)an,則:三、疊乘法an=S1(n=1),Sn-Sn-1(n≥2).an=a1+?(ak-ak-1)=a1+?f(k-1)=a1+?f(k).n-1k=1
【總結(jié)】第十四講:數(shù)列求和及綜合應(yīng)用一、考綱和課標(biāo)要求:1、掌握數(shù)列求和的常見(jiàn)的基本方法2、解決數(shù)列間綜合及數(shù)列與其他知識(shí)綜合的相關(guān)問(wèn)題3、09考綱有2個(gè)C級(jí)要求在這部分出現(xiàn)二:本專題需解決的問(wèn)題:(1)化歸為基本數(shù)列的求和問(wèn)題(2)數(shù)列間的綜合(基本數(shù)列、關(guān)聯(lián)數(shù)列)(3)數(shù)列與其
2025-11-03 01:26
【總結(jié)】數(shù)列通項(xiàng)的求法高三備課組求數(shù)列的通項(xiàng)方法1、由等差,等比定義,寫(xiě)出通項(xiàng)公式2、利用迭加an-an-1=f(n)、迭乘an/an-1=f(n)、迭代3、一階遞推,我們通常將其化為
2025-10-31 08:47
【總結(jié)】數(shù)列的通項(xiàng)公式(高三復(fù)習(xí)課)—以本為據(jù),發(fā)散思維一、回顧?等差數(shù)列的定義:一個(gè)數(shù)列從第二項(xiàng)起,它的每一項(xiàng)與前一項(xiàng)的差為常數(shù),那么這個(gè)數(shù)列為等差數(shù)列。其通項(xiàng)為:dnaan)1(1???是如何推導(dǎo)出來(lái)的呢??由定義:
2025-11-01 00:27
【總結(jié)】專題五數(shù)列解答題的解法?第二部分考題剖析>>試題特點(diǎn)>>0311數(shù)列解答題的解法應(yīng)試策略>>072020年高考各地的16套試卷中,每套試卷均有1道數(shù)列解答題試題,處于壓軸位置的有6道.由此知,數(shù)列解答題屬于中檔題或難題.
2025-11-01 07:30
【總結(jié)】數(shù)列求和復(fù)習(xí):1、數(shù)列和的定義數(shù)列{an}的前n項(xiàng)和Sn=2n2-3n+1,則a4+a5+a6+…+a10=____2、等差、等比數(shù)列的前n項(xiàng)和的公式3、在等差、等比數(shù)列的前n項(xiàng)和的公式中運(yùn)用了哪些求思想:①(等差數(shù)列)倒序相加②(等比數(shù)列)錯(cuò)
2025-07-25 15:40
【總結(jié)】2020屆高考數(shù)學(xué)二輪復(fù)習(xí)系列課件18《數(shù)列數(shù)列通項(xiàng)與數(shù)列中的不等式》一、基礎(chǔ)知識(shí).n有有關(guān)的命題:第一步:驗(yàn)證初始狀態(tài),即“n=n0時(shí)命題成立”;第二步:假設(shè)推理,即“假設(shè)n=k(k≥n0)時(shí)命題成立,由此出發(fā),推得n=k+1時(shí)命題也成立”.:21,0???aaa:注
2025-11-02 02:53
【總結(jié)】 高考數(shù)學(xué)備考之放縮技巧 證明數(shù)列型不等式,因其思維跨度大、構(gòu)造性強(qiáng),需要有較高的放縮技巧而充滿思考性和挑戰(zhàn)性,能全面而綜合地考查學(xué)生的潛能與后繼學(xué)習(xí)能力,因而成為高考?jí)狠S題及各級(jí)各類競(jìng)賽試題命題的極好素材。這類問(wèn)題的求解策略往往是:通過(guò)多角度觀察所給數(shù)列通項(xiàng)的結(jié)構(gòu),深入剖析其特征,抓住其規(guī)律進(jìn)行恰當(dāng)?shù)胤趴s;其放縮技巧主要有以下幾種: 一、裂項(xiàng)放縮
2025-05-30 22:40
【總結(jié)】等差數(shù)列、等比數(shù)列課時(shí)考點(diǎn)4高三數(shù)學(xué)備課組考試內(nèi)容:數(shù)列.等差數(shù)列及其通項(xiàng)公式.等差數(shù)列前n項(xiàng)和公式.等比數(shù)列及其通項(xiàng)公式.等比數(shù)列前n項(xiàng)和公式.考試要求:(1)理解數(shù)列的概念,了解數(shù)列通項(xiàng)公式的意義.了解遞推公式是給出數(shù)列的一種方法,并能根據(jù)遞推公式寫(xiě)出數(shù)列的前幾項(xiàng).(2)理解等差數(shù)列的概念,
【總結(jié)】數(shù)列與不等式專題七????????111.2()(12)31?????????????nnnnnnnnnSnSaaSSnaaa數(shù)列概念定義:按一定次序排
2025-11-02 08:47
【總結(jié)】高三文科數(shù)學(xué)數(shù)列專題練習(xí)1.已知數(shù)列是等比數(shù)列,且(1)求數(shù)列的通項(xiàng)公式;(2)求證:;(3)設(shè),求數(shù)列的前100項(xiàng)和.1.解:(1)設(shè)等比數(shù)列的公比為.則由等比數(shù)列的通項(xiàng)公式得,又?jǐn)?shù)列的通項(xiàng)公式是.數(shù)列的前100項(xiàng)和是{an}中,,,且滿足常數(shù)(1)求常數(shù)和數(shù)列的通項(xiàng)公式;(2)設(shè),
2025-04-04 05:03