【總結(jié)】拋物線的標(biāo)準(zhǔn)方程教學(xué)目標(biāo)]知識與技能1.掌握拋物線的定義和標(biāo)準(zhǔn)方程及其推導(dǎo)過程,理解拋物線中的基本量;2.掌握求拋物線的標(biāo)準(zhǔn)方程的基本方法;[過程與方法情感態(tài)度與價值觀教學(xué)重難點能根據(jù)已知條件求拋物線的標(biāo)準(zhǔn)方程教學(xué)流程\內(nèi)容\板書關(guān)鍵點撥加工潤色一、復(fù)
2024-11-20 00:30
【總結(jié)】《拋物線及標(biāo)準(zhǔn)方程》教學(xué)目標(biāo)?知識與技能目標(biāo)?使學(xué)生掌握拋物線的定義、拋物線的標(biāo)準(zhǔn)方程及其推導(dǎo)過程.?要求學(xué)生進一步熟練掌握解析幾何的基本思想方法,提高分析、對比、概括、轉(zhuǎn)化等方面的能力.?過程與方法目標(biāo)?情感,態(tài)度與價值觀目標(biāo)?(1)培養(yǎng)學(xué)生用對稱的美學(xué)思維來體現(xiàn)數(shù)學(xué)的和諧美。?(2)培養(yǎng)學(xué)生
2024-11-18 12:15
【總結(jié)】江蘇省建陵高級中學(xué)2021-2021學(xué)年高中數(shù)學(xué)四種命題導(dǎo)學(xué)案(無答案)蘇教版選修1-1【學(xué)習(xí)目標(biāo)】1.了解命題及其逆命題、否命題與逆否命題;理解四種命題之間的關(guān)系;2.會利用兩個命題互為逆否命題的關(guān)系判別命題的真假.【課前預(yù)習(xí)】?你能判斷它們的真假嗎?(1)若直線a∥b,則直線a和直線b無公共點;(2)
2024-12-04 18:08
【總結(jié)】江蘇省建陵高級中學(xué)2020-2020學(xué)年高中數(shù)學(xué)橢圓的標(biāo)準(zhǔn)方程(1)導(dǎo)學(xué)案(無答案)蘇教版選修1-1【學(xué)習(xí)目標(biāo)】,了解橢圓標(biāo)準(zhǔn)方程的推導(dǎo)方法;寫出橢圓的焦點坐標(biāo),會用待定系數(shù)法求橢圓的方程;【課前預(yù)習(xí)】1、橢圓定義的理解:2、橢圓的標(biāo)準(zhǔn)方程:3、橢圓的標(biāo)準(zhǔn)方程的推導(dǎo):
2024-11-20 00:31
【總結(jié)】江蘇省建陵高級中學(xué)2020-2020學(xué)年高中數(shù)學(xué)常見函數(shù)的導(dǎo)數(shù)(1)導(dǎo)學(xué)案(無答案)蘇教版選修1-1一、學(xué)習(xí)目標(biāo)1.能由導(dǎo)數(shù)的定義三個步驟推導(dǎo)如ykxb??、yc?、yx?、2yx?、1yx?等最簡單函數(shù)的導(dǎo)數(shù)公式。2.熟記冪函數(shù)、指數(shù)對數(shù)函數(shù)、正弦余弦函數(shù)的導(dǎo)數(shù)公式。3.初步會利用導(dǎo)數(shù)公式求簡單函數(shù)的導(dǎo)
【總結(jié)】江蘇省建陵高級中學(xué)2021-2021學(xué)年高中數(shù)學(xué)雙曲線標(biāo)準(zhǔn)方導(dǎo)學(xué)案(無答案)蘇教版選修1-1【學(xué)習(xí)目標(biāo)】理解雙曲線的定義及標(biāo)準(zhǔn)方程【課前預(yù)習(xí)】1.回顧橢圓的定義,標(biāo)準(zhǔn)方程2.平面內(nèi)到兩定點的距離的差為常數(shù)的點的軌跡是什么?3.拉鏈演示4.雙曲線的定義:平面內(nèi)與兩個定點1F,2F的距
2024-12-06 00:25
【總結(jié)】江蘇省響水中學(xué)高中數(shù)學(xué)第2章《圓錐曲線與方程》拋物線的簡單幾何性質(zhì)的應(yīng)用3導(dǎo)學(xué)案蘇教版選修1-1學(xué)習(xí)目標(biāo):,會利用幾何性質(zhì)求拋物線的標(biāo)準(zhǔn)方程、焦點坐標(biāo)、準(zhǔn)線方程、焦半徑和通徑.,理解拋物線的焦點弦的特殊意義,結(jié)合定義得到焦點弦的公式,并利用該公式解決一些相關(guān)的問題.重點:拋物線的幾何性質(zhì)及其運用難點:直線與拋物線的
2024-11-19 17:31
【總結(jié)】江蘇省響水中學(xué)高中數(shù)學(xué)第2章《圓錐曲線與方程》拋物線的簡單幾何性質(zhì)的應(yīng)用2導(dǎo)學(xué)案蘇教版選修1-1學(xué)習(xí)目標(biāo):,會利用幾何性質(zhì)求拋物線的標(biāo)準(zhǔn)方程、焦點坐標(biāo)、準(zhǔn)線方程、焦半徑和通徑.,理解拋物線的焦點弦的特殊意義,結(jié)合定義得到焦點弦的公式,并利用該公式解決一些相關(guān)的問題.重點:拋物線的幾何性質(zhì)及其運用難點:直線與
【總結(jié)】課題拋物線及其標(biāo)準(zhǔn)方程(一)第一課時學(xué)習(xí)目標(biāo):、準(zhǔn)線的概念..,利用方程研究拋物線,進一步運用坐標(biāo)法,提高“數(shù)學(xué)應(yīng)用”意識.學(xué)習(xí)重點:.會求簡單的拋物線的方程.學(xué)習(xí)難點:標(biāo)準(zhǔn)方程的推導(dǎo)學(xué)習(xí)方法:以講學(xué)稿為依托的探究式教學(xué)方法。學(xué)習(xí)過程一、課前預(yù)習(xí)指導(dǎo):1.橢圓的定義
2024-11-18 18:59
【總結(jié)】課題拋物線的簡單性質(zhì)(一)學(xué)習(xí)目標(biāo),理解焦點弦的概念,理解拋物線性質(zhì)與標(biāo)準(zhǔn)方程的關(guān)系.,進一步理解用代數(shù)方法研究幾何性質(zhì)的優(yōu)越性,感受坐標(biāo)法和數(shù)形結(jié)合的基本思想.,類比拋物線的性質(zhì);由拋物線的方程研究性質(zhì),鞏固數(shù)形結(jié)合思想.學(xué)習(xí)重點:拋物線的性質(zhì),理解拋物線性質(zhì)與標(biāo)準(zhǔn)方程的關(guān)系.學(xué)習(xí)難點:
【總結(jié)】江蘇省建陵高級中學(xué)2020-2020學(xué)年高中數(shù)學(xué)利用導(dǎo)數(shù)研究(2)導(dǎo)學(xué)案(無答案)蘇教版選修1-1一:學(xué)習(xí)目標(biāo)1.利用導(dǎo)數(shù)求函數(shù)的單調(diào)區(qū)間2.利用導(dǎo)數(shù)證明函數(shù)的單調(diào)性二:課前預(yù)習(xí)1.(1)作出函數(shù)342???xxy的圖像,并指出其單調(diào)區(qū)間:(2)作出函數(shù)??
【總結(jié)】江蘇省建陵高級中學(xué)2020-2020學(xué)年高中數(shù)學(xué)常見函數(shù)的導(dǎo)數(shù)(2)導(dǎo)學(xué)案(無答案)蘇教版選修1-1一、學(xué)習(xí)目標(biāo)1.熟記常見的基本初等函數(shù)的求導(dǎo)公式。2.熟練掌握求簡單函數(shù)的導(dǎo)數(shù)的兩種方法:定義法、公式法。3.理解導(dǎo)數(shù)的幾何意義,并掌握曲線的切線問題的處理的基本路徑。二、課前預(yù)習(xí)1.列出你所知的求導(dǎo)公式。
【總結(jié)】江蘇省建陵高級中學(xué)2021-2021學(xué)年高中數(shù)學(xué)橢圓的標(biāo)準(zhǔn)方程(2)導(dǎo)學(xué)案(無答案)蘇教版選修1-1【學(xué)習(xí)目標(biāo)】1.靈活應(yīng)用橢圓的兩個定義解題;2.能推導(dǎo)橢圓的焦半徑公式,并會用此公式解決問題。【課前預(yù)習(xí)】1.在橢圓)0(12222????babyax上的點M(x0,y0)的左焦半徑|MF1|=
2024-12-04 18:02
【總結(jié)】江蘇省響水中學(xué)高中數(shù)學(xué)第2章《圓錐曲線與方程》拋物線標(biāo)準(zhǔn)方程2導(dǎo)學(xué)案蘇教版選修1-1學(xué)習(xí)目標(biāo):、標(biāo)準(zhǔn)方程及其幾何圖形.能用待定系數(shù)法求拋物線的標(biāo)準(zhǔn)方程.""p與拋物線的開口方向、焦點位置的關(guān)系.,體會探究的樂趣,激發(fā)學(xué)生的學(xué)習(xí)熱情.學(xué)習(xí)運用類比的思想探尋另三種標(biāo)準(zhǔn)方程.重點:拋物線的定義和標(biāo)準(zhǔn)方
【總結(jié)】江蘇省漣水縣第一中學(xué)高中數(shù)學(xué)橢圓的幾何性質(zhì)(1)教學(xué)案蘇教版選修1-1教學(xué)目標(biāo):1.掌握橢圓的基本幾何性質(zhì):范圍、對稱性、頂點、長軸、短軸.2.感受如何運用方程研究曲線的幾何性質(zhì).教學(xué)重點:橢圓的幾何性質(zhì)——范圍、對稱性、頂點.教學(xué)難點:橢圓幾何性質(zhì)的研究過程,即如何運用橢圓標(biāo)準(zhǔn)方程研究橢圓的幾何性質(zhì).教學(xué)過程: