【總結】12.,??""""?."",.,;"",定積分學知識我們需要學習新的數(shù)為此直線運動的問題速解決變的知識能否利用勻速直線運動積面直邊圖形轉化為求面積曲邊圖形把求能否呢如何解決這些問題變力做功的問題物體位移、的面積、變速直線運動曲邊圖形的平
2024-11-18 15:24
【總結】§微積分基本定理學習目標思維脈絡1.通過實例能直觀了解微積分基本定理.2.能利用微積分基本定理求基本函數(shù)的定積分.3.了解導數(shù)與定積分的關系.4.能在具體的應用中體會微積分基本定理的作用和意義.微積分基本定理微積分基本定理:如果連續(xù)函數(shù)f(x)
2024-11-18 13:32
【總結】利用導數(shù)判斷函數(shù)的單調性【教學目標】了解并掌握函數(shù)單調性的定義以及導數(shù)與函數(shù)單調性的關系,會利用導數(shù)求函數(shù)的單調區(qū)間,會利用導數(shù)畫出函數(shù)的大致圖像?!窘虒W重點】利用導數(shù)求單調區(qū)間【教學難點】導數(shù)與單調性的關系一、課前預習(閱讀教材24--25頁,填寫知識點.):怎樣判斷函數(shù)的單調性?1、__________2、__
2024-12-03 11:30
【總結】§定積分目的要求:(1)定積分的定義(2)利用定積分的定義求函數(shù)的積分,掌握步驟(3)定積分的幾何意義(4)會用定積分表示陰影部分的面積重點難點:定積分的定義是本節(jié)的重點,定積分的幾何意義的應用是本節(jié)的難點。教學內容:定積分:一般地,設函數(shù)()fx在區(qū)間[
2024-11-19 21:26
【總結】120y0x1xx?y?xyOy=f(x)1yAB00()()fxxfxyxx???????物體運動的平均速度00()()sttststt???????物體運動的瞬時速度0000()()limlimttstts
【總結】推理與證明第二章章末歸納總結第二章知識結構1知識梳理2隨堂練習4專題探究3知識結構知識梳理推理與證明要解決的主要問題:運用合情推理的思維方式探索、發(fā)現(xiàn)一些數(shù)學結論,可運用演繹推理來加以證明.學會了綜合法、分析法及反
2024-11-17 20:10
【總結】本資料由書利華教育網(又名數(shù)理化網)為您整理2Z=a+bi(a,b∈R)實部!虛部!復數(shù)的代數(shù)形式:一個復數(shù)由有序實數(shù)對(a,b)確定本資料由書利華教育網(又名數(shù)理化網)為您整理3實數(shù)可以用數(shù)軸上的點來表示。實數(shù)數(shù)軸上的點一一對應(數(shù))(形)類比實數(shù)
【總結】(1)對于某類事物,由它的一些特殊事例或其全部可能情況,歸納出一般結論的推理方法,叫歸納法.歸納法{完全歸納法不完全歸納法由特殊一般特點:a2=a1+da3=a1+2da4=a1+3d……an=a1+(n-1)d如何證明:1+3+5+…+(2n-1)=
【總結】1復數(shù)的除法2復數(shù)除法的法則復數(shù)的除法是乘法的逆運算,滿足(c+di)(x+yi)=(a+bi)(c+di≠0)的復數(shù)x+yi,叫做復數(shù)a+bi除以復數(shù)c+di的商,記作.a+bic+di3a+bic+di=(a+bi)(c-di)(c+di
2024-11-18 01:21
【總結】1復數(shù)的乘法與除法2一、復數(shù)的乘法法則:(a+bi)(c+di)=ac+bci+adi+bdi2=(ac-bd)+(bc+ad)i顯然任意兩個復數(shù)的積仍是一個復數(shù).對于任意z1,z2,z3∈C,有z1?z2=z2?z1,z1?z2?z3=z1?(z2?z3),z
【總結】導數(shù)的幾何意義【教學目標】,會用導數(shù)的定義求曲線的切線方程。。,體會導數(shù)的思想及豐富內涵,感受導數(shù)在解決實際問題中的應用。【教學重點】導數(shù)的幾何意義【教學難點】利用導數(shù)解決實際問題一、課前預習1、割線的斜率:已知)(xfy?圖像上兩點))(,(00xfxA,))(,(00xxfxxB????
2024-11-19 05:50
【總結】(一)1.4.2微積分基本定理(一)【學習要求】1.直觀了解并掌握微積分基本定理的含義.2.會利用微積分基本定理求函數(shù)的積分.【學法指導】微積分基本定理不僅揭示了導數(shù)和定積分之間的內在聯(lián)系,而且還提供了計算定積分的一種有效方法.本課時欄目開關填一填研一研練一練
2025-07-24 17:44
【總結】§學習目標1.理解曲邊梯形面積的求解思想,掌握其方法步驟;2.了解定積分的定義、性質及函數(shù)在上可積的充分條件;3.明確定積分的幾何意義和物理意義;4.無限細分和無窮累積的思維方法.預習與反饋(預習教材P42~P47,找出疑惑之處)1.用化歸為計算矩形面積和逼近的思想方法求出曲邊遞形的面積的具體步驟為、
2024-12-08 08:44
【總結】曲邊梯形面積與定積分:在直角坐標系中,由連續(xù)曲線y=f(x),直線x=a、x=b及x軸所圍成的圖形叫做曲邊梯形。Oxyaby=f(x)一.求曲邊梯形的面積x=ax=by=f(x)baxyOA1A?A1.用
2024-11-17 05:48
【總結】高二數(shù)學學案編號19班級姓名復數(shù)的乘法一、【學習目標】理解復數(shù)乘法的運算法則,了解乘方的規(guī)則,掌握一些常見結果?!局攸c、難點】乘方的對比學習、常見結果的理解與運用。二、【教學過程】(一)復習回顧
2024-12-08 16:21