【總結(jié)】數(shù)學(xué)歸納法應(yīng)用舉例例1.用數(shù)學(xué)歸納法證明:2222(1)(21)1236nnnn???????證明:(1)當(dāng)n=1時,左邊=1,右邊=1,等式成立;(2)假設(shè)當(dāng)n=k時,等式成立,即2222(1)(21)1236kkkk???????那么
2024-11-18 01:21
【總結(jié)】演繹推理【教學(xué)目標(biāo)】,掌握演繹推理的基本模式,能運用它們進(jìn)行簡單的推理。了解合情推理與演繹推理的聯(lián)系和差別;2.通過學(xué)習(xí)演繹推理,體會推理的規(guī)則,合乎邏輯地進(jìn)行推理;,認(rèn)識數(shù)學(xué)的人文價值,培養(yǎng)理性思維,形成審慎思維的習(xí)慣.【教學(xué)重點】演繹推理的結(jié)構(gòu)特征【教學(xué)難點】三段論推理規(guī)則一、課前預(yù)習(xí):(閱讀教材59—61頁,完成知識點填空
2024-12-03 11:30
【總結(jié)】數(shù)學(xué)歸納法及其應(yīng)用舉例數(shù)學(xué)歸納法是一種證明與正整數(shù)有關(guān)的數(shù)學(xué)命題的重要方法.主要有兩個步驟一個結(jié)論:【歸納奠基】(1)證明當(dāng)n取第一個值n0(如n0=1或2等)時結(jié)論正確(2)假設(shè)n=k(k≥n0,n∈N*)時結(jié)論正確,證明n=k+1時結(jié)論也正確(3)由(1)、(2)得出結(jié)論【歸納遞推】
2024-11-17 05:48
【總結(jié)】復(fù)數(shù)的概念一、學(xué)法建議:1、本節(jié)內(nèi)容概念較多,在理解的基礎(chǔ)上要牢記實數(shù)、虛數(shù)、純虛數(shù)與復(fù)數(shù)的關(guān)系,特別要明確:實數(shù)也是復(fù)數(shù),要把打復(fù)數(shù)與虛數(shù)加以區(qū)別,對于純虛數(shù)bi(b≠0,不要只記形式,要注意b≠0,如0i=0是實數(shù),而不是純虛數(shù),初學(xué)復(fù)數(shù)時最易在這里出錯。2、復(fù)數(shù)z=a+bi(a、是由它實部和虛
2024-11-19 20:23
【總結(jié)】12?分的創(chuàng)立導(dǎo)致了微積期的研究數(shù)量的變化規(guī)律進(jìn)行長我們可以對通過研究函數(shù)這些性質(zhì)常重要的或最小值等性質(zhì)是非與慢以及函數(shù)的最大值減的快了解函數(shù)的增與減、增研究函數(shù)時型化規(guī)律的重要數(shù)學(xué)模函數(shù)是描述客觀世界變,,.,..,,數(shù)中的作用可以體會導(dǎo)數(shù)在研究函從中你的性質(zhì)我們運用導(dǎo)數(shù)研究函數(shù)下面34?????
2024-11-18 15:24
【總結(jié)】1的應(yīng)用導(dǎo)數(shù)公式表及數(shù)學(xué)軟件2.,表導(dǎo)數(shù)公式等函數(shù)的的基本初使用下面可以直接今后我們?yōu)榱朔奖?式基本初等函數(shù)的導(dǎo)數(shù)公????;xf,cxf.'01??則若??????;nxxf,Nnxxf.n'n12?????則若????;xcosxf,xsinx
【總結(jié)】第二章推理與證明復(fù)習(xí)小結(jié)推理與證明推理證明合情推理演繹推理直接證明數(shù)學(xué)歸納法間接證明比較法類比推理歸納推理分析法綜合法反證法知識結(jié)構(gòu)bc+caca+abab+bc=++222222a
2024-11-17 20:10
【總結(jié)】綜合法與分析法1.綜合法綜合法是從原因推導(dǎo)到結(jié)果的思維方法,而分析法是一種從結(jié)果追溯到產(chǎn)生這一結(jié)果的原因的思維方法。具體地說,綜合法是從已知條件出法,經(jīng)過逐步的推理,最后達(dá)到待證結(jié)論。分析法則是從待證結(jié)論出法,一步一步尋求結(jié)論成立的充分條件,最后達(dá)到題設(shè)的已知條件或已被證明的事實。例1.求證:5321
【總結(jié)】12.,??""""?."",.,;"",定積分學(xué)知識我們需要學(xué)習(xí)新的數(shù)為此直線運動的問題速解決變的知識能否利用勻速直線運動積面直邊圖形轉(zhuǎn)化為求面積曲邊圖形把求能否呢如何解決這些問題變力做功的問題物體位移、的面積、變速直線運動曲邊圖形的平
【總結(jié)】1導(dǎo)數(shù)的運算.2常數(shù)函數(shù)與冪函數(shù)的導(dǎo)數(shù)3???,,.,,如何求它的導(dǎo)數(shù)呢數(shù)對于函那么度體在某一時刻的瞬時速物理意義是運動物點處的切線的斜率在某導(dǎo)數(shù)的幾何意義是曲線我們知道xfy???.,,,個定值所趨于的那時趨近于就是求出當(dāng)?shù)膶?dǎo)數(shù)求函數(shù)根據(jù)函數(shù)的定義xyxxfy?
【總結(jié)】2.2復(fù)數(shù)的乘法與除法雙基達(dá)標(biāo)?限時20分鐘?1.復(fù)數(shù)i2+i3+i41-i等于().A.-12-12iB.-12+12i-12i+12i解析i2+i3+i41-i=-1-i+11-i=-i1-i=(
2024-12-03 00:13
【總結(jié)】12???,?,.).tan(.,時的瞬時速度是多少比如度呢如何求運動員的瞬時速那么度在某時刻的瞬時速她他度不一定能反映運動員的平均速的速度稱為我們把物體在某一時刻是不同的度運動員在不同時刻的速在高臺跳水運動中2?tvelociyeousins瞬時速度????.,,,.,;,
2024-11-17 20:06
【總結(jié)】導(dǎo)數(shù)的幾何意義【教學(xué)目標(biāo)】,會用導(dǎo)數(shù)的定義求曲線的切線方程。。,體會導(dǎo)數(shù)的思想及豐富內(nèi)涵,感受導(dǎo)數(shù)在解決實際問題中的應(yīng)用?!窘虒W(xué)重點】導(dǎo)數(shù)的幾何意義【教學(xué)難點】利用導(dǎo)數(shù)解決實際問題一、課前預(yù)習(xí)1、割線的斜率:已知)(xfy?圖像上兩點))(,(00xfxA,))(,(00xxfxxB????
2024-11-19 05:50
【總結(jié)】導(dǎo)數(shù)的實際應(yīng)用【教學(xué)目標(biāo)】利用導(dǎo)數(shù)解決實際問題中的最優(yōu)化問題,掌握建立數(shù)學(xué)模型的方法,形成求解優(yōu)化問題的思路和方法.【教學(xué)重點】實際問題中的導(dǎo)數(shù)應(yīng)用【教學(xué)難點】數(shù)學(xué)建模一、課前預(yù)習(xí)::31頁例1、例2,總結(jié)利用導(dǎo)數(shù)解決生活中的優(yōu)化問題的一般步驟:例1有一塊邊長為a的正方形鐵板,現(xiàn)從鐵板的四個角各截去一個相同的小正方
【總結(jié)】數(shù)學(xué)歸納法【教學(xué)目標(biāo)】了解數(shù)學(xué)歸納法的原理及使用范圍,初步掌握數(shù)學(xué)歸納法證題的兩個步驟和一個結(jié)論,會用數(shù)學(xué)歸納法證明一些簡單的等式問題;通過對歸納法的復(fù)習(xí),體會不完全歸納法的弊端,通過實例理解理論與實際的辨證關(guān)系;在學(xué)習(xí)中感受探索發(fā)現(xiàn)問題、提出問題的,解決問題的樂趣.【教學(xué)重點】數(shù)學(xué)歸納法證題步驟,尤其是遞推步驟中歸納假設(shè)【教學(xué)難點】數(shù)學(xué)歸納法的
2024-12-03 04:57