【正文】
要采用基于迭代算法和腐蝕算法的邊緣檢測,然后把細(xì)胞的形態(tài)學(xué)特征,以及色度特征同時用于癌細(xì)胞的識別,提高癌細(xì)胞診斷的準(zhǔn)確性,將對癌細(xì)胞的前期診斷和治療起到很大的幫助。由于普查的工作最大,而傳統(tǒng)的肺癌診斷手段主要是依靠人工 ,受到多種因素的制約,影響診斷的準(zhǔn)確性與效率。 近年來,我國實現(xiàn)了一套肺癌早期識別和分類系統(tǒng)。醫(yī)學(xué)癌細(xì)胞的智能診斷研究是國際的難題和前沿課題。對于其它一些可制作病理涂片的腫瘤,國內(nèi)外都有一些腫瘤細(xì)胞檢測發(fā)現(xiàn)與分析進(jìn)行了研究。這種傳統(tǒng)的人工分類的工作重復(fù)而簡單、效率低下、精確度不高。 邊緣檢測的 MATLAB 實現(xiàn) .................................................. 18 167。3 .1 迭代算法概述 ........................................................................ 13 應(yīng)用舉例 ........................................................................... 13 167。 Krisch 算子 ...................................................................... 10 167。 邊緣檢測概述 .......................................................................... 9 167。 圖像灰度化 .............................................................................. 5 167。 :任務(wù)書、開題報告、外文譯文、譯文原文(復(fù)印件)。有權(quán)將論文(設(shè)計)用于非贏利目的的少量復(fù)制并允許論文(設(shè)計)進(jìn)入學(xué)校圖書館被查閱。 關(guān)鍵詞 :癌細(xì)胞,邊緣檢測,最佳閾值,輪廓提取 , 數(shù)字圖像處理 河南科技大學(xué)本科畢業(yè)設(shè)計(論文) III CANCER CELL EDGE DETECTION (BASED ON ITERATIVE ALGORITHM AND CORROSION ALGORITHM, CONTOUR EXTRACTION) ABSTRACT Many people will me ntion cancer fear, cancer is one of the most mon fatal diseases in the world today the world every year many people die of cancer, and incidence rate is still increasing every year. The treatment of cancer depends on the diagnosis of his early, early is the best period of the treatment of cancer. The time of diagnosis of most cases of cancer are now belong to the late, lost the best time to cure, so the accurate early diagnosis and treatment has bee an urgent need to address the problem. Cancer cells and noncancer pathology experts in a traditional microscope to observe the biopsy or smear difficult to distinguish, with the help of modern puter technology, bined with practical experience of the pathologist, medical image processing using image processing technology, can improve to judge the effectiveness and efficiency in the use of the image information and thus more accurate identification of cancer cells. This has practical significance and broad prospects for medical research and teaching, and clinical diagnosis. Digital image processing technique has been widely applied to the biomedical field, the use of puter image processing and analysis, and plete detection and recognition of cancer cells can help doctors make a diagnosis of tumor cancers. Need to be made in the identification of cancer cells, the quantitative results, the human eye is difficult to accurately plete such work, and the use of puter image processing to plete the analysis and identification of the microscopic images have made great progress. In recent 河南科技大學(xué)本科畢業(yè)設(shè)計(論文) IV years, domestic and foreign medical images of cancer cells testing to identify the researchers put forward a lot of theory and method for the diagnosis of cancer cells has very important meaning and practical value. Cell edge detection is the cell area of the number of roundness and color, shape and chromaticity calculation and the basis of the analysis their test results directly affect the analysis and diagnosis of the disease. Classical edge detection operators such as Sobel operator, Laplacian operator, each pixel neighborhood of the image gray scale changes to detect the edge. Although these operators is simple, fast, but there are sensitive to noise, get isolated or in short sections of a continuous edge pixels, overlapping the adjacent cell edge defects, while the optimal threshold segmentation and contour extraction method of bining edge detection, obtained by the iterative algorithm for the optimal threshold for image segmentation, contour extraction algor ithm, digging inside the cell pixels, the last remaining part of the image is the edge of the cell, change the processing order of the traditional edge detection algorithm, by MATLAB programming, the experimental results that can effectively suppress the noise impact at the same time be able to objectively and correctly select the edge detection threshold, precision cell edge detection. KEY WORDS: The cancer cells, edge detection, and optimal threshold, contour extraction, digital image processing河南科技大學(xué)本科畢業(yè)設(shè)計(論文) V 畢業(yè)論文(設(shè)計)原創(chuàng)性聲明 本人所呈交的畢業(yè)論文(設(shè)計) 是我在導(dǎo)師的指導(dǎo)下進(jìn)行的研究工作及取得的研究成果。近年來國內(nèi)外醫(yī)學(xué)圖像研究者對癌細(xì)胞的檢測識別提出了很多理論和方法,對癌細(xì)胞的診斷具有十分 重要的意義和實踐價值。 因為癌細(xì)胞和非癌細(xì)胞對于病理專家在傳統(tǒng)的顯微鏡下觀察切片或涂片的方法下很難進(jìn)行區(qū)分,借助現(xiàn)代計算機技術(shù)結(jié)合病理專家實踐經(jīng)驗,采用圖像處理技術(shù)對醫(yī)學(xué)圖像 進(jìn)行處理,可以提高判斷的有效性和圖像信息的使用效率,從而對癌細(xì)胞進(jìn)行更加準(zhǔn)確的識別。河南科技大學(xué)本科畢業(yè)設(shè)計(論文) I 癌細(xì)胞邊緣檢測(基于迭代算法和腐蝕算法的輪廓提取) 摘 要 提起癌癥很多人都會感到恐懼,癌癥是當(dāng)今世界上最常見的致命疾病之一,世界上每年都有很多人死于癌癥,并且發(fā)病率仍在逐年上升。這對醫(yī)學(xué)科研與教學(xué),以及臨床診斷方面有著現(xiàn)實的意義和廣闊的前景。 細(xì)胞邊緣的檢測是進(jìn)行細(xì)胞面積圓度個數(shù)和顏色等形態(tài)及色度學(xué)的計算和分析的基礎(chǔ),其檢測結(jié)果直接影響病情的分析和診斷結(jié)果。據(jù)我所知, 除文中已經(jīng)注明引用的內(nèi)容外,本論文(設(shè)計)不包含其他個人已經(jīng)發(fā)表或撰寫過的研究成果。學(xué)??梢怨颊撐模ㄔO(shè)計)的全部或部分內(nèi)容。 、圖表要求: 1)文字通順,語言流暢,書寫字跡工整,打印字體及大小符合要求,無錯別字,不準(zhǔn)請他人代寫 2)工程設(shè)計類題目的圖紙,要求部分用尺規(guī)繪制,部分用計算機繪制,所有圖紙應(yīng)符合國家技術(shù)標(biāo)準(zhǔn)規(guī)范。 圖像平滑濾波 .......................................................................... 6 167。 經(jīng)典邊緣檢測算子 .................................................................. 9 167。 Laplacian 算子 ................................................................. 11 167。 最佳閾值分割迭代法 ............................................................ 14 167。 程序及分析 ............................................................................ 18 河南科技大學(xué)本科畢業(yè)設(shè)計(論文) IX 167。隨著計算機模式識別技術(shù)和人工智能研究的不斷發(fā)展,人們把目光投向了對細(xì)胞圖像的自動識別上,這 樣大大的提高了檢查的效率和精確度。例如, Kraef SK 對血液病理圖像和骨髓腫瘤病理圖像中的癌細(xì)胞的發(fā)現(xiàn)和檢測分析進(jìn)行 了研究。國內(nèi)從 20 世紀(jì) 50 年代起,至少已投入了 4000 個人 /年,其完成的效果為:可以去除樣本中 50%的涂片、剩余 50%還需人工檢測。該系統(tǒng)將人工作智能技術(shù)、圖像處理技術(shù)、形態(tài)學(xué)和色度學(xué)技術(shù)、神經(jīng)網(wǎng)絡(luò)以及軟件技術(shù)等高新技術(shù)綜合應(yīng)用與肺癌早期細(xì)胞病理診斷,解決了肺癌早期細(xì)胞病理診斷中河南科技大學(xué)本科畢業(yè)設(shè)計(論文) 2 的智能化和自動化的若干關(guān)鍵問題,并且進(jìn)行了創(chuàng)新研究。因此,利用計算機圖像處理技術(shù),減輕人的工作負(fù)擔(dān),提高診斷的準(zhǔn)確性和效率,研制目標(biāo)是在癌細(xì)胞識別率最高的前提下,假陽性率最小。 細(xì)胞邊緣的檢測是進(jìn)行細(xì)胞面積圓度個數(shù)和顏色等形態(tài)及色度學(xué)的計算和分析的基礎(chǔ),其檢測結(jié)果直接影響病情的分析和診斷結(jié)果。 數(shù)字圖像處理基本知識 數(shù)字圖像處理又稱計算機圖像處理,就是用計算機處理數(shù)字圖像。圖像 A 的 x 和 y 坐標(biāo)及幅度均是連續(xù)的,為了把它們轉(zhuǎn)換成數(shù)字形式,必須對坐標(biāo)和幅度進(jìn)行取樣。 經(jīng)過數(shù)字化處理后,得到的數(shù)字矩陣就作為計算機處理的對象了。利用這些變換的性質(zhì)和特點,將圖像轉(zhuǎn)換到頻域中進(jìn)行處理。圖像增強即突出圖像中感興趣的部