【總結(jié)】學習目標1理解零點的概念。2學會求函數(shù)的零點。3判斷零點所在區(qū)間。定義:對于函數(shù)y=f(x),使f(x)=0的實數(shù)x叫做函數(shù)y=f(x)的零點。(一)函數(shù)的零點方程f(x)=0有實數(shù)根函數(shù)y=f(x)有零點等價關系函數(shù)y=f(x)的圖象與x軸有交點
2025-11-02 21:09
【總結(jié)】復合函數(shù)圖像研究零點例1、求方程實數(shù)解的個數(shù)為個。例2、已知函數(shù)則下列關于函數(shù)的零點個數(shù)的判斷正確的是()A.當時,有3個零點;當時,有2個零點B.當時,有4個零點;當時,有1個零點C.無論為何值,均有2個零點D.無論為何值,均有4個零點例3、已知函數(shù)f(x)=,若關于x的方程f2(x)-bf(x)+c
2025-03-25 00:18
【總結(jié)】1《方程的根與函數(shù)的零點》的教學設計湖北省黃岡市團風中學胡建平教材分析本節(jié)課選自《普通高中課程標準實驗教課書數(shù)學I必修本(A版)》的第三章的根與函數(shù)的的零點。函數(shù)與方程是中學數(shù)學的重要內(nèi)容,既是初等數(shù)學的基礎,又是出等數(shù)學與高等數(shù)學的連接紐帶。在現(xiàn)實生活實踐中,函數(shù)與方程都有著十分的應用,在注重理論與實踐相結(jié)合的今天,
2025-11-12 04:35
【總結(jié)】總體內(nèi)容展示:1、教材及地位分析2、學情分析3、教學目標分析4、教法分析5、教學過程展示6、教學總結(jié)與反思教材地位:必修一第三章“函數(shù)與方程”是高中數(shù)學的新增內(nèi)容,是近年來高考關注的熱點.本章函數(shù)與方程是中學數(shù)學的核
2025-08-01 18:01
【總結(jié)】方程的根與函數(shù)的零點導學案學習目標:對應方程根,圖像與X軸交點,三者的聯(lián)系;2.掌握零點存在的判定定理。學習要點:1、會判斷函數(shù)的零點、方程的根與圖像與X軸交點的關系2、會利用零點存在定理去解決問題。學習過程:課前預讀:課本P70對數(shù)函數(shù)定義,P71對數(shù)函數(shù)性質(zhì)表,P77
2024-11-24 16:35
【總結(jié)】方程的根和函數(shù)的零點XYAMBO10m(1,40/3)(0,10)?思考:一元二次方程ax2+bx+c=0(a≠0)的根與二次函數(shù)y=ax2+bx+c(a≠0)的圖象有什么關系?方程x2-2x+1=0
2025-11-10 13:12
【總結(jié)】第四章?中餐廳服務第二節(jié)零點餐服務1餐廳環(huán)境設計中的“圍”與“透”新課講授二一零點早餐服務零點午、晚餐服務2餐廳的輔助區(qū)域包括哪些?課前回顧(一)中餐廳電話預訂程序(二)中餐廳午晚餐服務程序一零點早餐服務零點餐服務的特點用餐賓客多少很難確定,接待量較難確定第四章中餐廳服務第二節(jié)
2025-04-30 18:21
【總結(jié)】導數(shù)問題中虛設零點的三大策略導數(shù)在高中數(shù)學中可謂“神通廣大”,是解決函數(shù)單調(diào)性、極值、最值、不等式證明等問題的“利器”.,,我們不必正面強求,可以采用將這個零點只設出來而不必求出來,然后謀求一種整體的轉(zhuǎn)換和過渡,再結(jié)合其他條件,“虛設零點”,來說明導數(shù)問題中“虛設零點”法的具體解題方法和策略.策略1整體代換將超越式化簡為普通式如果f′(x)是超越形式(對字母進行了有限次初等超越運算包
2025-03-25 00:40
【總結(jié)】利用導數(shù)研究方程的根和函數(shù)的零點5.(本小題滿分12分)已知函數(shù)且(I)試用含的代數(shù)式表示;(Ⅱ)求的單調(diào)區(qū)間;(Ⅲ)令,設函數(shù)在處取得極值,記點,證明:線段與曲線存在異于、的公共點;5.解法一:(I)依題意,得由得(Ⅱ)由(I)得(故令,則或
2025-06-16 22:23
【總結(jié)】學習內(nèi)容:【課程學習目標】1.知識與技能:(1)了解函數(shù)零點的概念:能夠結(jié)合具體方程說明方程的根、函數(shù)的零點、函數(shù)圖象與x軸的交點三者的關系;(2)理解函數(shù)零點存在性定理:了解圖象連續(xù)不斷的意義及作用;知道定理只是函數(shù)存在零點的一個充分條件;了解函數(shù)零點可能不止一個;矚慫潤厲釤瘞睞櫪廡賴賃軔朧礙鱔絹。(3)能利用函數(shù)圖象和性質(zhì)判斷某些函數(shù)的零點個數(shù),及所在區(qū)間.
2025-06-23 21:17
【總結(jié)】《方程的根與函數(shù)的零點》教學設計及教學反思一、背景分析1、學習任務分析函數(shù)與方程是中學數(shù)學的重要內(nèi)容,既是初等數(shù)學的基礎,又是初等數(shù)學與高等數(shù)學的連接紐帶。?原因是要用函數(shù)的觀點統(tǒng)帥中學數(shù)學,,解方程的問題就變成了求函數(shù)的零點問題.就本章而言,本節(jié)通過對二次函數(shù)的圖象的研究判斷一元二次方程根的存在性以及根的個數(shù)的判斷建立一元二次方程的根與相應的二次函數(shù)的零點的聯(lián)系,然后由
2025-04-19 05:40
【總結(jié)】西餐服務與管理講課人:孫建芳Westernserviceandmanagement西餐零點服務程序問候客人、引位入座、呈遞餐單及飲料單、打開餐巾Westernserviceandmanagement一、西餐零點服務程序?1、問候客人?2、引位入座?3、呈遞餐單及飲料單?4、打開餐巾?
2025-08-05 17:02
【總結(jié)】利用導數(shù)研究方程的根和函數(shù)的零點總結(jié):?方程的根?方程的根1.設為實數(shù),函數(shù),當什么范圍內(nèi)取值時,曲線與軸僅有一個交點。2、已知函數(shù)f(x)=-x+8x,g(x)=6lnx+m(Ⅰ)求f(x)在區(qū)間[t,t+1]上的最大值h(t);(Ⅱ)是否存在實數(shù)m,使得y=f(x)的圖象與y=g(x)的圖象有且只有三個不同的交點?若
2025-04-16 23:50
【總結(jié)】本文格式為Word版,下載可任意編輯 高中數(shù)學《方程根與函數(shù)零點》說課稿 高中數(shù)學《方程根與函數(shù)零點》說課稿 作為一名辛苦耕耘的教育工作者,常常需要準備說課稿,說課稿有助于提高教師的語言表達...
2025-04-04 12:02
【總結(jié)】教你如何化整為零破難題教你如何規(guī)范解答不失分教你如何易錯警示要牢記壓軸大題巧突破壓軸大題巧突破(四)利用導數(shù)研究函數(shù)的零點或方程的根[典例](2022·山東高考)(13分)設函數(shù)+c(e=28…是自然對數(shù)的底數(shù),c∈R).
2025-08-05 03:43