【總結(jié)】2.平面向量的坐標(biāo)運算情景:我們知道,在直角坐標(biāo)平面內(nèi),每一個點都可用一對有序?qū)崝?shù)(即它的坐標(biāo))表示,如點A(x,y)等.思考:對于每一個向量如何表示?若知道平面向量的坐標(biāo),應(yīng)如何進(jìn)行運算?1.兩個向量和的坐標(biāo)等于________________________________.即若a=(x1,y1),b
2024-12-09 03:42
【總結(jié)】函數(shù)的表示方法(二)一、基礎(chǔ)過關(guān)1.已知f(x)=?????x-5?x≥6?,f?x+2??x6?,則f(3)=________.2.函數(shù)f(x)=?????2x?0≤x≤1?,2?1x2?,3?x≥2?的值域是______.3.已
2024-12-08 20:18
【總結(jié)】平面向量共線的坐標(biāo)表示學(xué)習(xí)目標(biāo):1.理解用坐標(biāo)表示的平面向量共線的條件.2.能根據(jù)平面向量的坐標(biāo),判斷向量是否共線.3.掌握三點共線的判斷方法.【學(xué)法指導(dǎo)】1.應(yīng)用平面向量共線條件的坐標(biāo)表示來解決向量的共線問題優(yōu)點在于不需要引入?yún)?shù)“λ”,從而減少了未知數(shù)的個數(shù),而且使問題具有代數(shù)化的特點、程序
2024-11-19 20:38
【總結(jié)】1、平面向量的坐標(biāo)表示與平面向量分解定理的關(guān)系。2、平面向量的坐標(biāo)是如何定義的?3、平面向量的運算有何特點?類似地,由平面向量的分解定理,對于平面上的任意向量,均可以分解為不共線的兩個向量和使得a→11λa→22λa→=a
2024-11-18 01:33
【總結(jié)】向量的線性運算向量的加法一、填空題1.已知向量a表示“向東航行1km”,向量b表示“向南航行1km”,則a+b表示_______.①向東南航行2km②向東南航行2km③向東北航行2km④向東北航行2km2.在平行四邊形ABCD中,BC→+DC→+BA→+DA→
2024-12-05 03:24
【總結(jié)】向量的減法一、填空題1.化簡OP→-QP→+PS→+SP→的結(jié)果等于________.2.如圖所示,在梯形ABCD中,AD∥BC,AC與BD交于O點,則BA→-BC→-OA→+OD→+DA→=________.3.化簡(AB→-CD→)-(AC→-BD→)的結(jié)果是____
2024-12-05 10:16
【總結(jié)】一.創(chuàng)設(shè)情境.B.A某游覽風(fēng)景區(qū)欲在兩山之間架設(shè)一觀光索道,要測的兩山之間,現(xiàn)在岸邊選定1公里的基線AB,并在A點處測得∠A=600,在C點測得∠C=450,如何求得?.C解:過點B作BD⊥AC交AC點D在Rt△ADB中,sinA=
2024-11-18 08:49
【總結(jié)】揚子二中syh歡迎各位同仁蒞臨指導(dǎo)2、古典概型中的事件A發(fā)生的概率為:()mPAn?進(jìn)行大量的重復(fù)試驗,用這個事件發(fā)生的頻率近似地作為它的概率.1、求一個事件發(fā)生的概率的基本方法:3、幾何概型中的事件A發(fā)生的概率為:()dDPA?的測度的測度復(fù)習(xí)提問
2024-11-17 23:32
【總結(jié)】2020/12/24向量的加法看書P80~83(限時6分鐘)學(xué)習(xí)目標(biāo):通過實例,掌握向量的加法運算及理解其幾何意義。熟練運用加法的“三角形法則”和“平行四邊形”法則2020/12/24由于大陸和臺灣沒有直航,因此要從臺灣去上海探親,乘飛機(jī)要先從臺北到香港,再從香港到上海,這兩次位移
2024-11-17 11:59
【總結(jié)】平面向量的坐標(biāo)表示與運算OxyijaA(x,y)a1.以原點O為起點作,點A的位置由誰確定?aOA?由a唯一確定2.點A的坐標(biāo)與向量a的坐標(biāo)的關(guān)系?兩者相同向量a坐標(biāo)(x,y)一一對應(yīng)復(fù)習(xí)回顧已知
2024-11-18 12:09
【總結(jié)】平面向量共線的坐標(biāo)表示一、求點P分有向線段所成的比的幾種求法(1)定義法:根據(jù)已知條件直接找到使PP1=λ2PP的實數(shù)λ的值.例1已知點A(-2,-3),點B(4,1),延長AB到P,使|AP|=3|PB|,求點P的坐標(biāo).解:因為點在AB的延長線上,P為AB的外分點,所以AP=λPB,λ0
2024-11-19 17:32
【總結(jié)】"【志鴻全優(yōu)設(shè)計】2021-2021學(xué)年高中數(shù)學(xué)平面向量線性運算的坐標(biāo)表示課后訓(xùn)練北師大版必修4"1.已知a=(1,1),b=(1,-1),則向量1322?ab等于().A.(-2,-1)B.(-2,1)C.(-1,0)D.(-1,2)2.若AB
2024-12-03 03:14
【總結(jié)】§2.平面向量的正交分解及坐標(biāo)表示【學(xué)習(xí)目標(biāo)、細(xì)解考綱】1、理解平面向量的正交分解。2、聯(lián)系直角坐標(biāo)系,研究向量正交分解的坐標(biāo)運算。【知識梳理、雙基再現(xiàn)】1、平面向量的正交分解把一個向量分解為_____________,叫做把向量正交分解。2、向量的坐標(biāo)表示在平面直角坐標(biāo)系中,分別取與x軸、
2024-12-02 08:37
【總結(jié)】"【志鴻全優(yōu)設(shè)計】2021-2021學(xué)年高中數(shù)學(xué)積的坐標(biāo)表示課后訓(xùn)練北師大版必修4"1.已知向量a=(x-1,2),b=(2,1),則a⊥b的充要條件是().A.x=12?B.x=-1C.x=5D.x=02.若a=(2,3),b=(-4,7)
2024-12-03 03:13
【總結(jié)】2.平面向量共線的坐標(biāo)表示命題方向1三點共線問題例1.O是坐標(biāo)原點,OA→=(k,12),OB→=(4,5),OC→=(10,k).當(dāng)k為何值時,A、B、C三點共線?[分析]由A、B、C三點共線可知,AB→、AC→、BC→中任兩個共線,由坐標(biāo)表示的共線條件解方