【總結(jié)】本課時(shí)欄目開(kāi)關(guān)填一填研一研練一練§(一)學(xué)習(xí)要求1.理解均值不等式的內(nèi)容及證明.2.能熟練運(yùn)用均值不等式來(lái)比較兩個(gè)實(shí)數(shù)的大?。?.能初步運(yùn)用均值不等式證明簡(jiǎn)單的不等式.學(xué)法指導(dǎo)1.應(yīng)用均值不等式解決有關(guān)問(wèn)題必須緊扣它的適用條件,公式a2+b2≥2
2025-01-13 21:04
【總結(jié)】精品課件不等關(guān)系與不等式精品課件在考察事物之間的數(shù)量關(guān)系時(shí),經(jīng)常要對(duì)數(shù)量的大小進(jìn)行比較,我們來(lái)看下面的例子。國(guó)際上常用恩格爾系數(shù)(記為n)來(lái)衡量一個(gè)國(guó)家和地區(qū)人民的生活水平的高低。它的計(jì)算公式是。%n??100食品消費(fèi)額消
2025-01-06 15:06
【總結(jié)】第三章不等式§不等關(guān)系與不等式自主學(xué)習(xí)知識(shí)梳理1.比較實(shí)數(shù)a,b的大小(1)文字?jǐn)⑹鋈绻鸻-b是正數(shù),那么a________b;如果a-b為_(kāi)_____,那么a=b;如果a-b是負(fù)數(shù),那么a______b,反之也成立.(2)符號(hào)表示a-b0?
2024-11-19 06:19
【總結(jié)】《不等關(guān)系與不等式》教學(xué)目標(biāo)?1.使學(xué)生感受到在現(xiàn)實(shí)世界和日常生活中存在著大量的不等關(guān)系,在學(xué)生了解了一些不等式(組)產(chǎn)生的實(shí)際背景的前提下,能列出不等式與不等式組.?2.學(xué)習(xí)如何利用不等式表示不等關(guān)系,利用不等式的有關(guān)基本性質(zhì)研究不等關(guān)系;?3.通過(guò)學(xué)生在學(xué)習(xí)過(guò)程中的感受、體驗(yàn)、認(rèn)識(shí)狀況及理解程度,注重問(wèn)題情境、實(shí)際背景的設(shè)置,
2025-03-13 05:16
【總結(jié)】均值不等式的應(yīng)用(求最值)回顧一下重要不等式:均值不等式:222abab??(,0)2ababab???幾個(gè)重要的變形:2(0,0)ababab????2(,0)2ababab?????????222()(,)22a
2024-11-18 08:48
【總結(jié)】3.4不等式的實(shí)際應(yīng)用學(xué)習(xí)目標(biāo)理.2.重點(diǎn)是不等式的實(shí)際應(yīng)用.3.難點(diǎn)是建立不等式問(wèn)題模型,解決實(shí)際問(wèn)題.課堂互動(dòng)講練知能優(yōu)化訓(xùn)練不等式的實(shí)際應(yīng)用課前自主學(xué)案3.4課前自主學(xué)案溫故夯基1.作差比較法可以比較兩數(shù)(式)的大小,也可證明不等式.
2025-01-06 16:33
【總結(jié)】基本不等式:第1課時(shí)基本不等式1.理解并掌握基本不等式及其推導(dǎo)過(guò)程,明確基本不等式成立的條件.2.能利用基本不等式求代數(shù)式的最值.121.重要不等式當(dāng)a,b是任意實(shí)數(shù)時(shí),有a2+b2≥2ab,當(dāng)且僅當(dāng)a=b時(shí),等號(hào)成立.(1)公式中a,b的取值是
2024-11-17 19:03
【總結(jié)】......基本不等式習(xí)專(zhuān)題之基本不等式做題技巧【基本知識(shí)】1.(1)若,則(2)若,則(當(dāng)且僅當(dāng)時(shí)取“=”)2.(1)若,則(2)若,則(當(dāng)且僅當(dāng)時(shí)取“=”)(3)若,則(當(dāng)且僅當(dāng)時(shí)取“=”)(4)當(dāng)且僅當(dāng)
2025-05-13 23:45
【總結(jié)】知識(shí)回顧三個(gè)兩次模塊回顧練習(xí)010340323107320144112222????????????xxxxxxxx.)()()()(求不等式的解集????。,求丨,丨已知集合 BAxxxBxxA.?034016222????
2024-11-17 23:16
【總結(jié)】第一篇:高三數(shù)學(xué)均值不等式 3eud教育網(wǎng)://百萬(wàn)教學(xué)資源,完全免費(fèi),無(wú)須注冊(cè),天天更新! 均值不等式教案 教學(xué)目標(biāo): 教學(xué)重點(diǎn): 推導(dǎo)并掌握兩個(gè)正數(shù)的算術(shù)平均數(shù)不小于它們的幾何平均數(shù)...
2024-11-06 22:00
【總結(jié)】均值不等式主講人:宋國(guó)鳴北京師范大學(xué)良鄉(xiāng)附屬中學(xué)中學(xué)數(shù)學(xué)高一新授課創(chuàng)設(shè)情境?校園內(nèi)有一個(gè)邊長(zhǎng)分別為a和b的矩形花壇,以及三個(gè)正方形花壇,?①第一個(gè)正方形花壇與矩形花壇的周長(zhǎng)相等,設(shè)它的邊長(zhǎng)為;?②第二個(gè)正方形花壇與矩形花壇的面積相等,設(shè)它的邊長(zhǎng)為;?③第三個(gè)正方形
2024-11-23 13:02
【總結(jié)】高次不等式和分式不等式的解法一.高次不等式的解法對(duì)于不等式(x-a1)(x-a2)(x-an)0的解法是穿根標(biāo)線法a1a2an例1解下列不等式:(1)(x+1)(x-1)(x-2)0(2)x(x-1)2(x+1)3(x+2)0(3)(x-3)(x
【總結(jié)】第一篇:均值不等式應(yīng)用 均值不等式應(yīng)用 一.均值不等式 22a+b1.(1)若a,b?R,則a+b32ab(2)若a,b?R,則ab£a=b時(shí)取“=”)22 22.(1)若a,b?R*,則a+...
2024-11-05 18:14
【總結(jié)】?復(fù)習(xí)??a-b0ab?a-b=0a=b?a-bab?:?(1)比較兩個(gè)實(shí)數(shù)的大小,(2)推導(dǎo)不等式的性質(zhì),(3)不等式的證明,(4)解不等式的主要依據(jù)?
【總結(jié)】第一篇:均值不等式證明 均值不等式證明 一、已知x,y為正實(shí)數(shù),且x+y=1求證 xy+1/xy≥17/ 41=x+y≥2√(xy) 得xy≤1/4 而xy+1/xy≥ 2當(dāng)且僅當(dāng)xy=...
2024-11-05 18:15