freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

rgxaaa新人教版數(shù)學(xué)八年級(jí)上冊(cè)教案(全冊(cè)整理版)-wenkub

2022-09-02 00:02:46 本頁(yè)面
 

【正文】 學(xué)來(lái)源于實(shí)踐,反過來(lái)又服務(wù)于實(shí)踐的辯證唯物主義觀點(diǎn)。最后結(jié)合實(shí)例研究了鑲嵌的有關(guān)問題,體現(xiàn)了多邊形內(nèi)角和公式在實(shí)際生活中的應(yīng)用.教學(xué)目標(biāo)〔知識(shí)與技能〕 . 12999. 理解三角形及有關(guān)概念,會(huì)畫任意三角形的高、中線、角平分線;了解三角形的穩(wěn)定性,理解三角形兩邊的和大于第三邊,會(huì)根據(jù)三條線段的長(zhǎng)度判斷它們能否構(gòu)成三角形;會(huì)證明三角形內(nèi)角和等于1800,了解三角形外角的性質(zhì)。三角形的高、中線和角平分線是三角形中的主要線段,與三角形有關(guān)的角有內(nèi)角、外角。教材通過實(shí)驗(yàn)讓學(xué)生了解三角形的穩(wěn)定性,在知道三角形的內(nèi)角和等于1800的基礎(chǔ)上,進(jìn)行推理論證,從而得出三角形外角的性質(zhì)。了解多邊形的有關(guān)概念,會(huì)運(yùn)用多邊形的內(nèi)角和與外角和公式解決問題。重點(diǎn)難點(diǎn)三角形三邊關(guān)系、內(nèi)角和,多邊形的外角和與內(nèi)角和公式,鑲嵌是重點(diǎn);三角形內(nèi)角和等于1800的證明,根據(jù)三條線段的長(zhǎng)度判斷它們能否構(gòu)成三角形及簡(jiǎn)單的平面鑲嵌設(shè)計(jì)是難點(diǎn)。注意:三條線段必須①不在一條直線上,②首尾順次相接。同樣地有 AC+BC>AB ② AB+BC>AC ③由式子①②③我們可以知道什么?三角形的任意兩邊之和大于第三邊.四、三角形的分類我們知道,三角形按角可分為銳角三角形、鈍角三角形、直角三角形,我們把銳角三角形、鈍角三角形統(tǒng)稱為斜三角形。按邊分類:三角形 不等邊三角形 等腰三角形 底和腰不等的等腰三角形 等邊三角形 五、例題例 用一條長(zhǎng)為18㎝的細(xì)繩圍成一個(gè)等腰三角形。五、課堂練習(xí)課本4頁(yè)練習(xí)2題。 二、三角形的高請(qǐng)你在圖中畫出△ABC的一條高并說(shuō)說(shuō)你畫法。如果△ABC是直角三角形、鈍角三角形,上面的結(jié)論還成立嗎?現(xiàn)在我們來(lái)畫鈍角三角形三邊上的高,如圖。三、三角形的中線如圖,我們把連結(jié)△ABC的頂點(diǎn)A和它的對(duì)邊BC的中點(diǎn)D,所得線段AD叫做△ABC的邊BC上的中線,表示為BD=DC或BD=DC=1/2BC或2BD=2DC=BC.請(qǐng)你在圖中畫出△ABC的另兩條邊上的中線,看看有什么發(fā)現(xiàn)?三角的三條中線相交于一點(diǎn)。思考:三角形的角平分線與角的平分線是一樣的嗎?三角形的角平分線是線段,而角的平分線是射線,是不一樣的。想一想:三角形的三條高、三條中線、三條角平分線的交點(diǎn)有什么不同?三角形的三條中線的交點(diǎn)、三條角平分線的交點(diǎn)在三角形的內(nèi)部,而銳三角形的三條高的交點(diǎn)在三角形的內(nèi)部,直角三角形三條高的交戰(zhàn)在角直角頂點(diǎn),鈍角三角形的三條高的交點(diǎn)在三角形的外部。七作業(yè):課本8頁(yè)4;八、教后記[教學(xué)目標(biāo)]〔知識(shí)與技能〕 知道三角形具有穩(wěn)定性,四邊形沒有穩(wěn)定性;了解三角形的穩(wěn)定性在生產(chǎn)、生活中的應(yīng)用。在四邊形的木架上再釘一根木條,將它的一對(duì)頂點(diǎn)連接起來(lái),然后扭動(dòng)它,它的形狀會(huì)改變嗎?不會(huì)改變。你還能舉出一些例子嗎?四、課堂練習(xí)下列圖形中具有穩(wěn)定性的是( )A正方形 B長(zhǎng)方形 C直角三角形 D平行四邊形要使下列木架穩(wěn)定各至少需要多少根木棍?課本7頁(yè)練習(xí)。[教學(xué)過程] 一、導(dǎo)入新課我們?cè)谛W(xué)就知道三角形內(nèi)角和等于1800,這個(gè)結(jié)論是通過實(shí)驗(yàn)得到的,這個(gè)命題是不是真命題還需要證明,怎樣證明呢?二、三角形內(nèi)角和的證明回顧我們小學(xué)做過的實(shí)驗(yàn),你是怎樣操作的?把一個(gè)三角形的兩個(gè)角剪下拼在第三個(gè)角的頂點(diǎn)處,用量角器量出∠BCD的度數(shù),可得到∠A+∠B+∠ACB=1800。證明一過點(diǎn)C作CM∥AB,則∠A=∠ACM,∠B=∠DCM,又∠ACB+∠ACM+∠DCM=1800∴∠A+∠B+∠ACB=1800。∠CAB等于多少度?怎樣求∠CBA的度數(shù)?解:∠CBA=∠BAD∠CAD=800500=300 ∵AD∥BE ∴∠BAD+∠ABE=1800∴∠ABE=1800∠BAD=1800800=1000∴∠ABC=∠ABE∠EBC=1000400=600∴∠ACB=1800∠ABC∠CAB=1800600300=900答:從C島看AB兩島的視角∠ACB=1800是900。[教學(xué)過程]一、導(dǎo)入新課〔投影1〕如圖,△ABC的三個(gè)內(nèi)角是什么?它們有什么關(guān)系?是∠A、∠B、∠C,它們的和是1800。注意:每個(gè)頂點(diǎn)處有兩個(gè)外角,它們是對(duì)頂角。四、例題〔投影3〕例 如圖,∠∠∠3是三角形ABC的三個(gè)外角,它們的和是多少? 分析:∠1與∠BAC、∠2與∠ABC、∠3與∠ACB有什么關(guān)系?∠BAC、ABC、∠ACB有什么關(guān)系?解:∵∠1+∠BAC=1800,∠2+∠ABC=1800,∠3+∠ACB=1800,∴∠1+∠BAC+∠2+∠ABC+∠3+∠ACB=5400 又∠BAC+∠ABC+∠ACB=1800∴∠1+∠2+∠3==3600。多邊形按組成它的線段的條數(shù)分成三角形、四邊形、五邊形……、n邊形。[投影2]連接多邊形的不相鄰的兩個(gè)頂點(diǎn)的線段,叫做多邊形的對(duì)角線.四邊形有幾條對(duì)角線?五邊形有幾條對(duì)角線?畫圖看看。三、凸多邊形和凹多邊形[投影3]如圖,下面的兩個(gè)多邊形有什么不同?在圖(1)中,畫出四邊形ABCD的任何一條邊所在的直線,整個(gè)圖形都在這條直線的同一側(cè),這樣的四邊形叫做凸四邊形,這樣的多邊形稱為凸多邊形;而圖(2)就不滿足上述凸多邊形的特征,因?yàn)槲覀儺婤D所在直線,整個(gè)多邊形不都在這條直線的同一側(cè),我們稱它為凹多邊形。有五個(gè)人在告別的時(shí)候相互各握了一次手,他們共握了多少次手?你能找到一個(gè)幾何模型來(lái)說(shuō)明嗎?六、課堂小結(jié) 多邊形及有關(guān)概念。七、作業(yè):課本24頁(yè)1。現(xiàn)在你能利用三角形的內(nèi)角和定理證明嗎?二、多邊形的內(nèi)角和〔投影1〕如圖,從四邊形的一個(gè)頂點(diǎn)出發(fā)可以引幾條對(duì)角線?它們將四邊形分成幾個(gè)三角形?那么四邊形的內(nèi)角和等于多少度? ABCD可以引一條對(duì)角線;它將四邊形分成兩個(gè)三角形;因此,四邊形的內(nèi)角和=△ABD的內(nèi)角和+△BDC的內(nèi)角和=2180176。180176。一2180176。∴五邊形的內(nèi)角和為(5—1)180176。.三、例題〔投影6〕例1 如果一個(gè)四邊形的一組對(duì)角互補(bǔ),那么另一組對(duì)角有什么關(guān)系?如圖,已知四邊形ABCD中,∠A+∠C=180176?!唷螧+∠D= 360176。 ∠3+∠BAD=180176?!唷?+∠BAF+∠2+∠ABC+∠3+∠BAD+∠4+∠CDE+∠5+∠DEF+∠6+∠EFA=6180176。=360176。〔投影8〕如圖,從多邊形的一個(gè)頂點(diǎn)A出發(fā),沿多邊形各邊走過各頂點(diǎn),再回到A點(diǎn),然后轉(zhuǎn)向出發(fā)時(shí)的方向,在行程中所轉(zhuǎn)的各個(gè)角的和就是多邊形的外角和,由于走了一周,所得的各個(gè)角的和等于一個(gè)周角,所以多邊形的外角和等于360176。12例3 如圖所示,在△ABC中,△ABC的內(nèi)角平分線與外角平分線交于點(diǎn)P,試說(shuō)明∠P=1/2∠A.四、鞏固練習(xí)課本28—29頁(yè)復(fù)習(xí)題7(第3題可不做).五、教后記第十二章 全等三角形 單元要點(diǎn)分析 教學(xué)內(nèi)容 本章的主要內(nèi)容是全等三角形.主要學(xué)習(xí)全等三角形的性質(zhì)以及探索判定三角形全等的方法,并學(xué)會(huì)怎樣應(yīng)用全等三角形進(jìn)行證明,本章劃分為三個(gè)小節(jié),第一節(jié)學(xué)習(xí)三角形全等的概念、性質(zhì);第二節(jié)學(xué)習(xí)三角形全等的判定方法和直角三角形全等的特殊判定方法;第三節(jié)利用三角形全等證明角的平分線的性質(zhì),會(huì)利用角的平分線的性質(zhì)進(jìn)行證明. 教材分析 教材力求創(chuàng)設(shè)現(xiàn)實(shí)、有趣的問題情境,使學(xué)生經(jīng)歷從現(xiàn)實(shí)活動(dòng)中抽象出幾何模型和運(yùn)用所學(xué)內(nèi)容解決實(shí)際問題的過程.在內(nèi)容呈現(xiàn)上,把研究三角形全等條件的重點(diǎn)放在第一個(gè)條件上,通過“邊邊邊”條件探索什么是三角形的判定,如何判定,怎樣進(jìn)行推理論證,怎樣正確地表達(dá)證明過程.學(xué)生開始學(xué)習(xí)三角形判定定理時(shí)的困難在于定理的證明,而這些推理證明并不要求學(xué)生掌握.為了突出判定方法這條主渠道,教材都作為基本事實(shí)提出來(lái),在畫圖、實(shí)驗(yàn)中讓學(xué)生知道它們的正確性就可以了.在“角的平分線的性質(zhì)”一節(jié)中的兩個(gè)互逆定理,只要求學(xué)生了解其條件與結(jié)論之間的關(guān)系,不必介紹互逆命題、互逆定理等內(nèi)容,這將在“勾股定理”中介紹. 三維目標(biāo) 1.知識(shí)與技能 在探索全等三角形的性質(zhì)與判定中,提高認(rèn)知水平,積累數(shù)學(xué)活動(dòng)經(jīng)驗(yàn). 2.過程與方法 經(jīng)歷探索三角形全等的判定的,發(fā)展空間觀念和有條理的表達(dá)能力,掌握兩個(gè)三角形全等的判定并應(yīng)用于實(shí)際之中. 3.情感、態(tài)度與價(jià)值觀 培養(yǎng)良好的觀察、操作、想象、推理能力,感悟幾何學(xué)的內(nèi)涵. 重、難點(diǎn)與關(guān)鍵 1.重點(diǎn):使學(xué)生理解證明的基本過程,掌握用綜合法證明的格式. 2.難點(diǎn):領(lǐng)會(huì)證明的分析思路,學(xué)會(huì)運(yùn)用綜合法證明的格式. 3.關(guān)鍵:突出三角形全等的判定方法這條主線,淡化對(duì)定理的證明. 教學(xué)建議 1.注意使學(xué)生經(jīng)歷探索三角形性質(zhì)及三角形全等的判定的過程.在教學(xué)中鼓勵(lì)學(xué)生觀察、操作、推理,運(yùn)用多種方式探索三角形有關(guān)性質(zhì). 2.注重創(chuàng)設(shè)具有現(xiàn)實(shí)性、趣味性和挑戰(zhàn)性的情境,體現(xiàn)三角形的廣泛應(yīng)用. 3.注意直觀操作與說(shuō)理的結(jié)合,逐步培養(yǎng)學(xué)生有條理的思考和表達(dá). 課時(shí)劃分 本單元共分成9課時(shí). 12.1 全等三角形 1課時(shí) 12.2 三角形全等的性質(zhì) 5課時(shí) 12.3 角的平分線的性質(zhì) 2課時(shí) 復(fù)習(xí)與交流 1課時(shí) 全等三角形 教學(xué)內(nèi)容 本節(jié)課主要介紹全等三角形的概念和性質(zhì). 教學(xué)目標(biāo) 1.知識(shí)與技能 領(lǐng)會(huì)全等三角形對(duì)應(yīng)邊和對(duì)應(yīng)角相等的有關(guān)概念. 2.過程與方法 經(jīng)歷探索全等三角形性質(zhì)的過程,能在全等三角形中正確找出對(duì)應(yīng)邊、對(duì)應(yīng)角. 3.情感、態(tài)度與價(jià)值觀 培養(yǎng)觀察、操作、分析能力,體會(huì)全等三角形的應(yīng)用價(jià)值. 重、難點(diǎn)與關(guān)鍵 1.重點(diǎn):會(huì)確定全等三角形的對(duì)應(yīng)元素. 2.難點(diǎn):掌握找對(duì)應(yīng)邊、對(duì)應(yīng)角的方法. 3.關(guān)鍵:找對(duì)應(yīng)邊、對(duì)應(yīng)角有下面兩種方法:(1)全等三角形對(duì)應(yīng)角所對(duì)的邊是對(duì)應(yīng)邊,兩個(gè)對(duì)應(yīng)角所夾的邊是對(duì)應(yīng)邊;(2)對(duì)應(yīng)邊所對(duì)的角是對(duì)應(yīng)角,兩條對(duì)應(yīng)邊所夾的角是對(duì)應(yīng)角. 教具準(zhǔn)備 四張大小一樣的紙片、直尺、剪刀. 教學(xué)方法 采用“直觀──感悟”的教學(xué)方法,讓學(xué)生自己舉出形狀、大小相同的實(shí)例,加深認(rèn)識(shí). 教學(xué)過程 一、動(dòng)手操作,導(dǎo)入課題 1.先在其中一張紙上畫出任意一個(gè)多邊形,再用剪刀剪下,思考得到的圖形有何特點(diǎn)? 2.重新在一張紙板上畫出任意一個(gè)三角形,再用剪刀剪下,思考得到的圖形有何特點(diǎn)? 【學(xué)生活動(dòng)】動(dòng)手操作、用腦思考、與同伴討論,得出結(jié)論. 【教師活動(dòng)】指導(dǎo)學(xué)生用剪刀剪出重疊的兩個(gè)多邊形和三角形. 學(xué)生在操作過程中,教師要讓學(xué)生事先在紙上畫出三角形,然后固定重疊的兩張紙,注意整個(gè)過程要細(xì)心. 【互動(dòng)交流】剪出的多邊形和三角形,可以看出:形狀、大小相同,能夠完全重合.這樣的兩個(gè)圖形叫做全等形,用“≌”表示. 概念:能夠完全重合的兩個(gè)三角形叫做全等三角形. 【教師活動(dòng)】在紙版上任意剪下一個(gè)三角形,要求學(xué)生手拿一個(gè)三角形,做如下運(yùn)動(dòng):平移、翻折、旋轉(zhuǎn),觀察其運(yùn)動(dòng)前后的三角形會(huì)全等嗎? 【學(xué)生活動(dòng)】動(dòng)手操作,實(shí)踐感知,得出結(jié)論:兩個(gè)三角形全等. 【教師活動(dòng)】要求學(xué)生用字母表示出每個(gè)剪下的三角形,同時(shí)互相指出每個(gè)三角形的頂點(diǎn)、三個(gè)角、三條邊、每條邊的邊角、每個(gè)角的對(duì)邊. 【學(xué)生活動(dòng)】把兩個(gè)三角形按上述要求標(biāo)上字母,并任意放置,與同桌交流:(1)何時(shí)能完全重在一起?(2)此時(shí)它們的頂點(diǎn)、邊、角有何特點(diǎn)? 【交流討論】通過同桌交流,實(shí)驗(yàn)得出下面結(jié)論: 1.任意放置時(shí),并不一定完全重合,只有當(dāng)把相同的角旋轉(zhuǎn)到一起時(shí)才能完全重合. 2.這時(shí)它們的三個(gè)頂點(diǎn)、三條邊和三個(gè)內(nèi)角分別重合了. 3.完全重合說(shuō)明三條邊對(duì)應(yīng)相等,三個(gè)內(nèi)角對(duì)應(yīng)相等,對(duì)應(yīng)頂點(diǎn)在相對(duì)應(yīng)的位置. 【教師活動(dòng)】根據(jù)學(xué)生交流的情況,給予補(bǔ)充和語(yǔ)言上的規(guī)范. 1.概念:把兩個(gè)全等的三角形重合到一起,重合的頂點(diǎn)叫做對(duì)應(yīng)頂點(diǎn),重合的邊叫做對(duì)應(yīng)邊,重合的角叫做對(duì)應(yīng)角.2.證兩個(gè)三角形全等時(shí),通常把表示對(duì)應(yīng)頂點(diǎn)的字母寫在對(duì)應(yīng)的位置上,如果本圖11.1─2△ABC和△DBC全等,點(diǎn)A和點(diǎn)D,點(diǎn)B和點(diǎn)B,點(diǎn)C和點(diǎn)C是對(duì)應(yīng)頂點(diǎn),記作△ABC≌△DBC.【問題提出】課本圖11.1─1中,△ABC≌△DEF,對(duì)應(yīng)邊有什么關(guān)系?對(duì)應(yīng)角呢? 【學(xué)生活動(dòng)】經(jīng)過觀察得到下面性質(zhì): 1.全等三角形對(duì)應(yīng)邊相等; 2.全等三角形對(duì)應(yīng)角相等. 二、隨堂練習(xí),鞏固深化 課本P37練習(xí). 【探研時(shí)空】1.如圖1所示,△ACF≌△DBE,∠E=∠F,若AD=20cm,BC=8cm,你能求出線段AB的長(zhǎng)嗎?與同伴交流.(AB=6) 2.如圖2所示,△ABC≌△AEC,∠B=30176?!螮CA=85176?!螦∠B,由于∠A=∠A′,∠B=∠B′,∴∠C=∠C′.【教師提問】在△ABC和△DEF中,∠A=∠
點(diǎn)擊復(fù)制文檔內(nèi)容
研究報(bào)告相關(guān)推薦
文庫(kù)吧 www.dybbs8.com
備案圖片鄂ICP備17016276號(hào)-1