【總結(jié)】線性代數(shù)公式1、行列式1.行列式共有個(gè)元素,展開后有項(xiàng),可分解為行列式;2.代數(shù)余子式的性質(zhì):①、和的大小無關(guān);②、某行(列)的元素乘以其它行(列)元素的代數(shù)余子式為0;③、某行(列)的元素乘以該行(列)元素的代數(shù)余子式為;3.代數(shù)余子式和余子式的關(guān)系:4.設(shè)行列式:將上、下翻轉(zhuǎn)或左右翻轉(zhuǎn),所得行列式為,則;將順時(shí)針或逆時(shí)針旋轉(zhuǎn),所得行列式
2025-07-24 13:45
【總結(jié)】數(shù)量矩陣是對角矩陣的一種!A-B相似,不管是不是實(shí)對稱矩陣一定是特征值一樣的!(反之?沒有實(shí)對稱這個(gè)前提對嗎?對比書上195頁例14)實(shí)對稱的更是的!而正負(fù)慣性指數(shù)前提是二次型函數(shù)的,所以一定要實(shí)對稱矩陣的!標(biāo)準(zhǔn)型不定,可以有很多種,但是不管化成哪種,慣性指數(shù)是一定的,一樣的!因此判斷兩個(gè)二次型能否相互化成關(guān)鍵是看慣性指數(shù)是否一樣!這個(gè)定理為什么成立?而慣性指數(shù)等同(相等)于一
2025-03-23 12:03
【總結(jié)】第一章行列式1.為何要學(xué)習(xí)《線性代數(shù)》?學(xué)習(xí)《線性代數(shù)》的重要性和意義。答:《線性代數(shù)》是理、工、醫(yī)各專業(yè)的基礎(chǔ)課程,它是初等代數(shù)理論的繼續(xù)和發(fā)展,它的理論和方法在各個(gè)學(xué)科中得到了廣泛的應(yīng)用。2.《線性代數(shù)》的前導(dǎo)課程。答:初等代數(shù)。3.《線性代數(shù)》的后繼課程。答:高等代數(shù),線性規(guī)劃,運(yùn)籌學(xué),經(jīng)濟(jì)學(xué)等。4.如何學(xué)習(xí)《線性代數(shù)》?答:掌握各章節(jié)的基
【總結(jié)】《工程數(shù)學(xué)—線性代數(shù)》復(fù)習(xí)參考資料——《線性代數(shù)》的復(fù)習(xí)尤其要求詳細(xì)閱讀人手一冊的《綜合練習(xí)題》授課教師:楊峰(省函授總站高級講師)第一章行列式一、全排列及其逆序數(shù)(理解)1、把n個(gè)不同元素排成一列,叫做這n個(gè)元素的全排列。(也稱排列)2、對于n個(gè)不同元素,先規(guī)定元素之間有一個(gè)標(biāo)準(zhǔn)次序(例如,n個(gè)不同的自然數(shù),可規(guī)定由小到大為標(biāo)準(zhǔn)次序),于是在這n個(gè)元素的任一排列中,
2024-10-04 15:17
【總結(jié)】第一篇:2006~2007線性代數(shù)試題1答案 一、選擇題:[教師答題時(shí)間:2分鐘](每小題3分,共12分)①A②D ③A ④B 二、填空題:[教師答題時(shí)間:4分鐘](每空3分,共12分)①5 ...
2024-11-15 07:16
【總結(jié)】經(jīng)濟(jì)學(xué)院本科生09-10學(xué)年第一學(xué)期線性代數(shù)期末考試試卷(A卷)答案及評分標(biāo)準(zhǔn)一、填空題(每小題4分、本題共28分)1.設(shè)A為n階方陣,?A為其伴隨矩陣,31det?A,則??????????????????AA1541det1_____2.已知12,??均為2維列向量,矩
2025-01-06 21:03
【總結(jié)】線性代數(shù)期末考試題一、填空題(將正確答案填在題中橫線上。每小題5分,共25分)1.若,則__________。2.若齊次線性方程組只有零解,則應(yīng)滿足。3.已知矩陣,滿足,則與分別是階矩陣。4.已知矩陣為33的矩陣,且,則。5.階方陣滿足,則。二、選擇題(每
2025-06-28 21:00
【總結(jié)】123456789101112
2025-01-09 10:35
【總結(jié)】.,數(shù)是唯一確定的梯形矩陣中非零行的行梯形,行階把它變?yōu)樾须A變換總可經(jīng)過有限次初等行任何矩陣nmA?.,,12階子式的稱為矩陣階行列式,的中所處的位置次序而得變它們在不改元素處的個(gè)),位于這些行列交叉列(行中任取矩陣在定義kAkAknkmkkkAnm???一、矩陣秩的概念矩陣的秩
2024-10-05 01:05
【總結(jié)】第一篇:線性代數(shù)實(shí)驗(yàn)心得 線性代數(shù)實(shí)驗(yàn)心得 線代課本的前言上就說:“在現(xiàn)代社會(huì),除了算術(shù)以外,線性代數(shù)是應(yīng)用最廣泛的數(shù)學(xué)學(xué)科了?!蔽覀兊木€代教學(xué)的一個(gè)很大的問題就是對線性代數(shù)的應(yīng)用涉及太少,課本上...
2024-10-15 12:33
【總結(jié)】《線性代數(shù)》英文專業(yè)詞匯序號英文中文1LinearAlgebra線性代數(shù)2determinant行列式3row行4column列5element元素6diagonal對角線7principaldiagona主對角線8auxiliarydiagonal次對角線
2025-08-09 00:43
【總結(jié)】線性代數(shù)課程教案學(xué)院、部系、所授課教師課程名稱線性代數(shù)課程學(xué)時(shí)45學(xué)時(shí)實(shí)驗(yàn)學(xué)時(shí)教材名稱
2025-04-17 08:42
【總結(jié)】課程標(biāo)準(zhǔn)課程名稱:線性代數(shù)適用專業(yè):經(jīng)濟(jì)、管理類新疆財(cái)經(jīng)大學(xué)應(yīng)用數(shù)學(xué)學(xué)院基礎(chǔ)數(shù)學(xué)教研室目錄第一部分課程性質(zhì)……………………………3第二部分課程目標(biāo)……………………………3第三部分教學(xué)內(nèi)容與基本要求……
2025-07-15 02:09
【總結(jié)】線性代數(shù)復(fù)習(xí)提綱:一:關(guān)于計(jì)算方面的內(nèi)容。1.用矩陣消元法求解線性方程組AX=b(分b=0與b≠0兩種情況)的全部解。例題見P97—例3和P93—例如。2.將向量β表示成向量組·····的線性組合。例題見P64—例6
2024-10-04 16:40
【總結(jié)】網(wǎng)友songhonger原創(chuàng),原創(chuàng)帖子地址√初等矩陣的性質(zhì):√設(shè),對階矩陣規(guī)定:為的一個(gè)多項(xiàng)式.√√√的特征向量不一定是的特征向量.√與有相同的特征值,但特征向量不一定相同.與相似(為可逆矩陣)記為:與正交相似(為正交矩陣)可以相似對角化