【總結(jié)】不等式的證明(二)一、不等式的證明1、比較法(1)比較法證明不等式的步驟(2)比較法經(jīng)常證明什么樣的不等式(3)作差之后變形的思維2、綜合法(1)定義(2)綜合法經(jīng)常證明什么樣的不等式(3)綜合法經(jīng)常證明不等式時(shí)經(jīng)常用到:(1)a2≥
2024-11-06 15:49
【總結(jié)】不等式的證明(二)第二課時(shí)四川省中江中學(xué)校李和敬教學(xué)目標(biāo)1.進(jìn)一步熟練掌握比較法證明不等式;2.了解作商比較法證明不等式;3.提高學(xué)生解題時(shí)應(yīng)變能力.教學(xué)重點(diǎn)比較法的應(yīng)用教學(xué)難點(diǎn)常見(jiàn)解題技巧教學(xué)方法啟發(fā)引導(dǎo)式教學(xué)活動(dòng)
2024-11-21 23:13
【總結(jié)】第一篇:不等式的證明(推薦) 不等式的基本性質(zhì) 1、不等式:(1)a2+2f2a,(2)a2+b232(a-b-1),(3)a2+b2fab恒成立的個(gè)數(shù)是() (A)0(B)1(C)2(D)3[...
2024-11-08 22:00
【總結(jié)】柯西不等式的證明及應(yīng)用(河西學(xué)院數(shù)學(xué)系01(2)班甘肅張掖734000)摘要:柯西不等式是一個(gè)非常重要的不等式,靈活巧妙的應(yīng)用它,可以使一些較為困難的問(wèn)題迎刃而解。本文在證明不等式,解三角形相關(guān)問(wèn)題,求函數(shù)最值,解方程等問(wèn)題的應(yīng)用方面給出幾個(gè)例子。關(guān)鍵詞:柯西不等式證明應(yīng)用中圖分類號(hào):O178
2025-06-23 14:21
【總結(jié)】1不等式的證明章節(jié)試題一.習(xí)題:1.求證:221423aaa???2.abc、、為正數(shù),求證:22333()()abababcabc??????3.已知:abab????001,,,求證:()()aabb???
2024-11-13 07:37
【總結(jié)】.......初二數(shù)學(xué)不等式解下列不等式:(1)x-17<-5;(2)>-3;(3)>11;(4)>.(5)3x+1>
2025-03-25 07:46
【總結(jié)】精品資源不等式證明的種種策略不等式證明教材中只給出幾種證明方法如比較法、分析法、綜合法來(lái)證明不等式。而實(shí)際上證明不等式的方法是名目繁多的,所使用的方法可以涉及到函數(shù)、數(shù)列、導(dǎo)數(shù)、三角函數(shù)、向量等許多方面的知識(shí)點(diǎn),同時(shí)掌握好證明不等式的方法對(duì)于加深理解這些知識(shí)點(diǎn)又起著深化作用。下面我們拋開(kāi)比較法、分析法、綜合法去闡述證明不等式的其他方法。。:分析:用代數(shù)方法來(lái)證明該題是較
2025-06-26 04:15
【總結(jié)】 不等式的證明一、素質(zhì)教育目標(biāo)1、知識(shí)教學(xué)點(diǎn)⑴證明不等式的方法—比較法⑵證明不等式的方法—綜合法⑶證明不等式的方法—分析法2、能力訓(xùn)練點(diǎn) 通過(guò)證明不等式的訓(xùn)練進(jìn)一步培養(yǎng)邏輯推理論證能力,培養(yǎng)分析問(wèn)題、解決問(wèn)題的能力。二、學(xué)法指導(dǎo) 證明不等式就是要證明所給不等式在給定條件下恒成立,由于不等式的形式多種多樣,所以證明不等式的方法也就靈活多樣,具體問(wèn)題具體分析是
2025-08-21 17:07
【總結(jié)】設(shè)X為一n維賦范空間,其范數(shù)定義為||x||p=i=1n|xi|p1p,1≤p∞,證明以下命題:1.||x||2≤||x||1≤n|x|2;2.||x||p≤||x||1;3.||x||q≤||x||p≤n1p-1q|x|q,pq證:1.先證||x||2≤||x||1|x1|2+|x2|2≤(|x1|+|x2|)2?(|x1|2+|x
2025-06-18 14:02
【總結(jié)】第一篇:常用均值不等式及證明證明 常用均值不等式及證明證明 這四種平均數(shù)滿足Hn£Gn£ An£Qn L、ana1、a2、?R+,當(dāng)且僅當(dāng)a1=a2=L =an時(shí)取“=”號(hào) 僅是上述不等式...
2024-10-28 00:03
【總結(jié)】第一篇:構(gòu)造函數(shù)證明數(shù)列不等式答案 構(gòu)造函數(shù)證明數(shù)列不等式答案 : ln22+ln33+ln44+L+ ln33 nn 3- n 5n+66 (n?N).* 解析:先構(gòu)造函數(shù)有l(wèi)...
2024-10-28 06:10
【總結(jié)】Holder不等式與Minkowski不等式的證明赫德(Holder)不等式是通過(guò)Young不等式來(lái)證明的,而閔可夫斯基(Minkowski)不等式是通過(guò)赫德(Holder)不等式來(lái)證明的.Young不等式如果x,y0?,實(shí)數(shù)p1?以及實(shí)數(shù)q?滿足1?p??+1?q??
2025-06-18 23:25
【總結(jié)】精品資源不等式與不等式組單元測(cè)試班級(jí)姓名座號(hào)成績(jī)一、選擇題(每小題5分,共30分)1、若mn,則下列不等式中成立的是()A、m+ana2D、a-ma-n2、不等式的負(fù)整數(shù)解的個(gè)數(shù)為()A、0個(gè)
2025-03-24 05:47
【總結(jié)】第一篇:均值不等式證明 均值不等式證明 一、已知x,y為正實(shí)數(shù),且x+y=1求證 xy+1/xy≥17/ 41=x+y≥2√(xy) 得xy≤1/4 而xy+1/xy≥ 2當(dāng)且僅當(dāng)xy=...
2024-11-05 18:15
【總結(jié)】第一篇:不等式證明[精選] §14不等式的證明 不等式在數(shù)學(xué)中占有重要地位,由于其證明的困難性和方法的多樣性,,而變形的依據(jù)是不等式的性質(zhì),不等式的性分類羅列如下:不等式的性質(zhì):a3b?a-b0...