【總結】.第二章平面向量一、選擇題(第1題)1.在△ABC中,AB=AC,D,E分別是AB,AC的中點,則().A.與共線 B.與共線C.與相等 D.與相等2.下列命題正確的是().A.向量與是兩平行向量B.若a,b都是單位向量,則a=bC.若=,則A,B,C,D四點構成
2025-08-05 19:24
【總結】......第二章平面向量一、選擇題(第1題)1.在△ABC中,AB=AC,D,E分別是AB,AC的中點,則().A.與共線 B.與共線C.與相等
2025-06-23 01:37
【總結】平面向量:1.已知向量a=(1,2),b=(2,0),若向量λa+b與向量c=(1,-2)共線,則實數(shù)λ等于( )A.-2 B.-C.-1 D.-[答案] C[解析] λa+b=(λ,2λ)+(2,0)=(2+λ,2λ),∵λa+b與c共線,∴-2(2+λ)-2λ=0,∴λ=-1.2.(文)已知向量a=(,1),b=(0,1),c=
2025-03-25 01:23
【總結】第一篇:平面向量復習題 平面向量 向量思想方法和平面向量問題是新考試大綱考查的重要部分,是新高考的熱點問題。題型多為選擇或填空題,數(shù)量為1-2題,均屬容易題,但是向量作為中學數(shù)學中的一個重要工具在...
2024-11-15 04:04
【總結】......專題八平面向量的基本定理(A卷)(測試時間:120分鐘滿分:150分)第Ⅰ卷(共60分)一、選擇題:本大題共12個小題,每小題5分,,只有一項是符合題目要求的.,向量,則向量()A.
2025-03-25 01:22
【總結】 平面向量基本定理[學習目標] ,,當一組基底選定后,.知識點一 平面向量基本定理(1)定理:如果e1,e2是同一平面內(nèi)的兩個不共線向量,那么對于這一平面內(nèi)的任意向量a,有且只有一對實數(shù)λ1,λ2,使a=λ1e1+λ2e2.(2)基底:把不共線的向量e1,e2叫做表示這一平面內(nèi)所有向量的一組基底.思考 如圖所示,e1,e2是兩個不共線的向量,試用e1,e2表示向量,,,,
2025-06-19 18:18
【總結】題型二:平面向量的共線問題1、若A(2,3),B(x,4),C(3,y),且=2,則x=,y=2、已知向量a、b,且=a+2b,=-5a+6b,=7a-2b,則一定共線的三點是()A.A、B、DB.A、B、CC.B、C、DD.A、C、D3、如果e1、e2是平面α內(nèi)兩個不共線的向量
【總結】第一篇:平面向量基本定理及相關練習(含答案) 平面向量2預習: :已知非零向量a和b,作OA=a,OB=b,則DAOB=q(0£q£p)叫做向量a和b的夾角。 (1)q=0時,a和b同向;(2)...
2024-11-15 04:03
2025-08-04 23:56
【總結】......平面向量一、基本運算1、設向量,若向量與向量共線,則24、已知向量若與平行,則實數(shù)的值是25、設,,,則6、已知向量,.若向量滿足,,則
【總結】§平面向量的數(shù)量積【學習目標、細解考綱】的意義;體會數(shù)量積與投影的關系。。,可以處理有關長度、角度和垂直問題?!局R梳理、雙基再現(xiàn)】ab與的夾角。______向量ab與,我們把______________叫ab與的數(shù)量積。(或________)記作___________即a
2024-12-02 08:37
【總結】......例題講解1、(易向量的概念)下列命題中,正確的是(),則與的方向相同或相反,,則,則這兩個單位向量相等,,則.2、(易線性表示)已知平面內(nèi)不共線的四點0,A,B,C滿足,
2025-06-19 23:35
【總結】《必修4》第二章平面向量一、知識綱要1、向量的相關概念:(1)向量:既有大小又有方向的量叫做向量,記為或。向量又稱矢量。注意①向量和標量的區(qū)別:向量既有大小又有方向;標量只有大小,沒有方向。普通的數(shù)量都是標量,力是一種常見的向量。②向量常用有向線段來表示,但也不能說向量就是有向線段,因為向量是自由的,可以平移;有向線段有固定的起點和終點,不能隨意移動。
2025-04-16 23:21
【總結】§2.平面向量的坐標運算【學習目標、細解考綱】1、會用坐標表示平面向量的加法、減與數(shù)乘運算。2、培養(yǎng)細心、耐心的學習習慣,提高分析問題的能力?!局R梳理、雙基再現(xiàn)】1、兩個向量和差的坐標運算已知:??1122(,),(,)axybxx,?為一實數(shù)則?????122
【總結】§2.平面向量的基本定理【學習目標、細解考綱】;.【知識梳理、雙基再現(xiàn)】:如果1e?,2e?是同一平面內(nèi)兩個的向量,a?是這一平面內(nèi)的任一向量,那么有且只有一對實數(shù),21,??使。其中,不共線的這兩個向量,1e?2e?叫做表示這一平
2024-11-30 13:51