【總結(jié)】16-7定積分在經(jīng)濟(jì)學(xué)中的應(yīng)用2總成本=固定成本+可變成本)(qC0C)(1qC平均成本(單位成本)=qqCC)(10?收益=價(jià)格×銷量,即R(Q)=PQ.利潤=總收益-總成本,即L(Q)=R(Q)-C(Q)
2025-05-15 07:07
【總結(jié)】應(yīng)用定積分的簡單應(yīng)用:??badxxfA)(一.定積分的幾何意義是什么?xyo)(xfy?abA1、如果函數(shù)f(x)在[a,b]上連續(xù)且f(x)≥0時(shí),那么:定積分就表示以y=f(x)為曲邊的曲邊梯形面積。?badxxf)(,0)
2024-11-12 18:19
【總結(jié)】§定積分在物理上的應(yīng)用由物理學(xué)知道,在水深為h處的壓強(qiáng)為hp??,這里?是水的比重.如果有一面積為A的平板水平地放置在水深為h處,那么,平板一側(cè)所受的水壓力為ApP??.如果平板垂直放置在水中,由于水深不同的點(diǎn)處壓強(qiáng)p不相等,平板一側(cè)所受的水壓力就不能直接使用此公式,而采用“元素法”
2025-08-23 14:19
【總結(jié)】湖北師范學(xué)院數(shù)學(xué)與統(tǒng)計(jì)學(xué)院數(shù)學(xué)建模實(shí)驗(yàn)電子教案微積分的基礎(chǔ)知識(shí)及其在Matlab中的實(shí)現(xiàn)明巍數(shù)學(xué)與統(tǒng)計(jì)學(xué)院湖北師范學(xué)院數(shù)學(xué)與統(tǒng)計(jì)學(xué)院數(shù)學(xué)建模實(shí)驗(yàn)電子教案數(shù)學(xué)建模種常用的微積分知識(shí)在Matlab中的實(shí)現(xiàn)1.極限運(yùn)算2.求導(dǎo)運(yùn)算3.積分運(yùn)算4.函數(shù)的Taylor
2025-08-04 22:40
【總結(jié)】中值定理洛必達(dá)法則函數(shù)的單調(diào)性與極值函數(shù)圖形的描繪導(dǎo)數(shù)在經(jīng)濟(jì)中的應(yīng)用結(jié)束第3章中值定理、導(dǎo)數(shù)應(yīng)用前頁結(jié)束后頁定理1設(shè)函數(shù)滿足下列條件)(xf)()(bfaf?(3)(1)在閉區(qū)間
2025-02-21 10:32
【總結(jié)】一、問題的提出二、積分上限函數(shù)及其導(dǎo)數(shù)三、牛頓-萊布尼茨公式四、小結(jié)思考題第三節(jié)微積分基本公式變速直線運(yùn)動(dòng)中位置函數(shù)與速度函數(shù)的聯(lián)系變速直線運(yùn)動(dòng)中路程為21()dTTvtt?設(shè)某物體作直線運(yùn)動(dòng),已知速度)(tvv?是時(shí)間間隔],[21TT上t的一個(gè)連續(xù)函數(shù),且0)(?tv
2025-08-11 08:39
【總結(jié)】abxyo??A曲邊梯形由連續(xù)曲線實(shí)例1(求曲邊梯形的面積))(xfy?)0)((?xf、x軸與兩條直線ax?、bx?所圍成.第五節(jié)定積分一、問題的提出)(xfy?abxyoabxyo用矩形面積近似取代曲邊梯形面積顯然,小矩形越多,矩形總面
2025-07-22 11:11
【總結(jié)】定義1設(shè)函數(shù))(xf在區(qū)間),[??a上連續(xù),且)()(xfxF??,如果極限????babdxxf)(lim存在,則稱此極限為函數(shù))(xf在無窮區(qū)間),[??a上的反常積分,記作???adxxf)(.???adxxf)(?????babdxxf)(lim當(dāng)極限存在
2025-07-22 11:10
【總結(jié)】..,.,,定積分的一些簡單應(yīng)用下面我們介紹定積分有著廣泛的應(yīng)用上事實(shí)求變速運(yùn)動(dòng)物體的位移梯形的面積邊定積分可以用來計(jì)算曲我們已經(jīng)看到.Sxy,xy122的面積所圍圖形計(jì)算由曲線例????.,.S,,.的交點(diǎn)的橫坐標(biāo)我們需要求出兩條曲線積分的上、下限為了確定出被積函數(shù)和積進(jìn)而可以用定積分
2025-08-16 01:47
【總結(jié)】主要內(nèi)容典型例題第六章定積分及其應(yīng)用習(xí)題課(一)問題1:曲邊梯形的面積問題2:變速直線運(yùn)動(dòng)的路程存在定理廣義積分定積分定積分的性質(zhì)定積分的計(jì)算法牛頓-萊布尼茨公式()d()()bafxxFbFa??
2025-08-21 12:42
【總結(jié)】經(jīng)濟(jì)數(shù)學(xué)不定積分在經(jīng)濟(jì)問題中的應(yīng)用第4章不定積分不定積分的概念與基本積分公式不定積分在經(jīng)濟(jì)問題中的應(yīng)用換元積分法分部積分法經(jīng)濟(jì)數(shù)學(xué)不定積分在經(jīng)濟(jì)問題中的應(yīng)用不定積分在經(jīng)濟(jì)問題中的應(yīng)用?)(xCC?已知某邊際成本函數(shù)
2025-05-11 05:15
【總結(jié)】學(xué)科分類號(hào)0701本科生畢業(yè)設(shè)計(jì)論文題目(中文):微積分及其應(yīng)用(英文):CalculusandtheapplicationoftheCalculus學(xué)生姓名:學(xué)號(hào):系別:數(shù)學(xué)系
2024-11-23 17:03
【總結(jié)】這一章除了第一節(jié),其余的題盡量自己重新計(jì)算?。。〉诎苏挛⒎e分的進(jìn)一步應(yīng)用第一節(jié)泰勒公式第二節(jié)微積分在幾何與物理中的應(yīng)用以下各題做得稀里糊涂()(*?*)還有待有興趣者將其完善!以下各題沒有給出答案!??!不會(huì)做呀x?
2025-08-22 22:52
【總結(jié)】一、全微分二、全微分在近似計(jì)算中的應(yīng)用三、小結(jié)思考題第三節(jié)全微分及其應(yīng)用),(),(yxfyxxf???xyxfx??),(),(),(yxfyyxf???yyxfy??),(二元函數(shù)對x和對y的偏微分(partialdifferential)二元函數(shù)對
2025-08-11 16:43
【總結(jié)】本科學(xué)年論文論文題目:積分在計(jì)算物體體積和質(zhì)量等問題中的應(yīng)用學(xué)生姓名:學(xué)號(hào):專業(yè):班級:指導(dǎo)教師:完成日期:2011年12月20日16/18目錄內(nèi)容摘要 1關(guān)鍵
2025-03-25 06:40