【總結(jié)】平行四邊形的判定第2課時【基礎(chǔ)梳理】三角形的中位線:連接三角形兩邊_____的線段叫三角形的中位線.中點三角形的中位線_____于三角形的第三邊,并且等于_____________.平行第三邊的一半【自我診斷】(1)一個三角形只有一條中位線.()×
2025-06-12 12:44
【總結(jié)】平行四邊形判定第十八章平行四邊形導(dǎo)入新課講授新課當(dāng)堂練習(xí)課堂小結(jié)學(xué)練優(yōu)八年級數(shù)學(xué)下(RJ)教學(xué)課件第2課時平行四邊形的判定(2)學(xué)習(xí)目標(biāo)“一組對邊平行且相等的四邊形是平行四邊形”的判定方法.(重點)平行四邊形的性質(zhì)與判定的綜合運用.(難點)數(shù)
2025-06-14 04:00
【總結(jié)】學(xué)練考數(shù)學(xué)八年級下冊R感謝您使用本課件,歡迎您提出寶貴意見!
2025-06-12 12:10
【總結(jié)】 平行四邊形的判定第1課時 平行四邊形的判定知識點1知識點2知識點3根據(jù)對邊關(guān)系判定平行四邊形圖,在四邊形ABCD中,AB∥CD,AB=CD,E為AB上一點,過點E作EF∥BC,交CD于點F,G為AD上一點,H為BC上一點,連接CG,GD=BH,則圖中的平行四邊形有(??D
2025-06-16 12:28
【總結(jié)】平行四邊形的判定第1課時【基礎(chǔ)梳理】平行四邊形的判定:(1)兩組對邊_________的四邊形是平行四邊形.(2)一組對邊___________的四邊形是平行四邊形.分別相等平行且相等:兩組對角_________的四邊形是平行四邊形.:對角線_________的四邊形是平行四邊形.分別
【總結(jié)】平行四邊形的判定第2課時到上一節(jié)課為止我們學(xué)習(xí)了幾種判定平行四邊形的方法?題.方法..,并能較熟練地應(yīng)用三角形中位線的性質(zhì)進行有關(guān)的證明和計算.將一根木棒從AB平移到DC,AB與DC之間有何位置關(guān)系、數(shù)量關(guān)系?ABCD四邊形ABCD是什么樣的圖形
2025-06-17 04:01
2025-06-21 12:28
【總結(jié)】平行四邊形18.平行四邊形的性質(zhì)第2課時平行四邊形的性質(zhì)(2)第2課時平行四邊形的性質(zhì)(2)知識目標(biāo)1.通過測量、證明,掌握平行四邊形對角線的性質(zhì),并能進行簡單的應(yīng)用.2.在掌握平行四邊形性質(zhì)的基礎(chǔ)上,能綜合運用其性質(zhì)進行解題.目標(biāo)突破目標(biāo)一識別中心對稱和中心對稱圖形
【總結(jié)】第十八章平行四邊形第1課時平行四邊形的判定學(xué)習(xí)指南知識管理歸類探究分層作業(yè)當(dāng)堂測評學(xué)習(xí)指南本節(jié)學(xué)習(xí)主要解決以下問題:平行四邊形的判定此內(nèi)容為本節(jié)的重點,也是難點.為此設(shè)計了【歸類探究】中的例1,例2
2025-06-21 03:26
【總結(jié)】 平行四邊形的判定學(xué)前溫故新課早知邊形的定義:有兩組對邊分別 的四邊形叫做平行四邊形.?邊形的性質(zhì):平行四邊形的兩組對邊分別 且 ,兩組對角分別 ,對角線 .?平行平行相等相等互相平分學(xué)前溫故新課早知邊
2025-06-12 12:04
【總結(jié)】 平行四邊形的判定邊形的判定定理(1)兩組對邊分別 的四邊形是平行四邊形.(2)對角線 的四邊形是平行四邊形.?(3)兩組對角分別 的四邊形是平行四邊形.?(4)一組對邊 的四邊形是平行四邊形.?相等互相平分
2025-06-12 01:49
【總結(jié)】第十八章平行四邊形數(shù)學(xué)8年級下冊R特殊的平行四邊形矩形第2課時工人師傅為了檢驗兩組對邊相等的四邊形窗框是否為矩形,常常要量一量這個四邊形的兩條對角線長度,如果對角線長相等,則窗框一定是矩形,你知道為什么嗎?觀察思考(1)命題“矩形的對角線相等”的條件是
2025-06-12 01:47
【總結(jié)】平行四邊形判定第十八章平行四邊形導(dǎo)入新課講授新課當(dāng)堂練習(xí)課堂小結(jié)學(xué)練優(yōu)八年級數(shù)學(xué)下(RJ)教學(xué)課件第1課時平行四邊形的判定(1)學(xué)習(xí)目標(biāo),體會類比思想及探究圖形判定的一般思路;(重點),能根據(jù)不同條件靈活選取適當(dāng)?shù)呐卸ǘɡ磉M行推理論證.(難點)
【總結(jié)】平行四邊形的判定第1課時BCAD:如圖(1)∵四邊形ABCD是平行四邊形∴()(定義)(2)∵()∴四邊形ABCD是平行四邊形()AB∥CD,
2025-06-17 03:56
【總結(jié)】平行四邊形的性質(zhì)第2課時【基礎(chǔ)梳理】平行四邊形對角線的性質(zhì)(1)如圖,平行四邊形ABCD的對角線相交于點O.∵四邊形ABCD是平行四邊形,∴AD__BC,AD∥BC,由AD∥BC,可得∠OAD=______,∠ODA=______,∴△AOD≌______,∴OA=___,OB=___.
2025-06-20 05:34