【總結(jié)】§定積分在物理上的應(yīng)用由物理學(xué)知道,在水深為h處的壓強(qiáng)為hp??,這里?是水的比重.如果有一面積為A的平板水平地放置在水深為h處,那么,平板一側(cè)所受的水壓力為ApP??.如果平板垂直放置在水中,由于水深不同的點(diǎn)處壓強(qiáng)p不相等,平板一側(cè)所受的水壓力就不能直接使用此公式,而采用“元素法”
2025-08-23 14:19
【總結(jié)】2設(shè)函數(shù))(xu、)(xv在區(qū)間??ba,上具有連續(xù)導(dǎo)數(shù),則有??????bababavduuvudv.定積分的分部積分公式推導(dǎo)??,vuvuuv???????,)(babauvdxuv?????,??????bababadxvudxvu
2025-05-11 04:24
【總結(jié)】高等數(shù)學(xué)電子教案第6章定積分及其應(yīng)用定積分起源于求圖形的面積和體積等實(shí)際問(wèn)題。微積分是一種數(shù)學(xué)思想,“無(wú)限細(xì)分”就是微分,“無(wú)限求和”就是積分。無(wú)限就是極限,極限的思想是微積分的基礎(chǔ)。“無(wú)限細(xì)分,無(wú)限求和”的積分思想在古代就已經(jīng)萌牙.最早可以追溯到希臘由阿
2025-07-20 12:23
【總結(jié)】1第八節(jié)定積分在幾何上的應(yīng)用第六章定積分的應(yīng)用建立積分模型的微元法求平面圖形的面積求空間立體的體積求平面曲線(xiàn)的弧長(zhǎng)與曲率旋轉(zhuǎn)體的側(cè)面積小結(jié)思考題作業(yè)2究竟哪些量可用定積分來(lái)計(jì)算呢.首先討論這個(gè)問(wèn)題.結(jié)合曲邊梯形面積的計(jì)算一、建立積分模型的微元法可知,用定積分
2025-04-29 06:12
【總結(jié)】16-7定積分在經(jīng)濟(jì)學(xué)中的應(yīng)用2總成本=固定成本+可變成本)(qC0C)(1qC平均成本(單位成本)=qqCC)(10?收益=價(jià)格×銷(xiāo)量,即R(Q)=PQ.利潤(rùn)=總收益-總成本,即L(Q)=R(Q)-C(Q)
2025-05-15 07:07
【總結(jié)】2022/8/261第十章定積分應(yīng)用0xyay=f(x)bx+dxx2022/8/262定積分概念的出現(xiàn)和發(fā)展都是由實(shí)際問(wèn)題引起和推動(dòng)的。因此定積分的應(yīng)用也非常廣泛。本書(shū)主要介紹幾何、物理上的應(yīng)用問(wèn)題,例如:平面圖形面積,曲線(xiàn)弧長(zhǎng),旋轉(zhuǎn)體體積,水壓力,抽水做功,引力等。第一節(jié)定積分的
2025-08-05 07:29
【總結(jié)】定積分的幾何應(yīng)用?badxxf)(利用定積分解決實(shí)際問(wèn)題的關(guān)鍵:建立定積分的式子,即找出被積函數(shù)和積分區(qū)間。建立定積分式子的方法:微元法(又稱(chēng)元素法)定積分微元法的實(shí)質(zhì):對(duì)能夠用定積分解決的實(shí)際問(wèn)題,尋找其被積函數(shù)和積分區(qū)間的方法。定積分的定義表達(dá)式:()bafxdx?01lim(
2024-12-08 09:19
【總結(jié)】回顧曲邊梯形求面積的問(wèn)題?=badxxfA)(一、問(wèn)題的提出曲邊梯形由連續(xù)曲線(xiàn))(xfy=)0)((?xf、x軸與兩條直線(xiàn)ax=、bx=所圍成。abxyo)(xfy=abxyo)(xfy=iinixfA?=?=?)(lim10??
2025-04-29 05:41
【總結(jié)】abxyo??A曲邊梯形由連續(xù)曲線(xiàn)實(shí)例1(求曲邊梯形的面積))(xfy?)0)((?xf、x軸與兩條直線(xiàn)ax?、bx?所圍成.第五節(jié)定積分一、問(wèn)題的提出)(xfy?abxyoabxyo用矩形面積近似取代曲邊梯形面積顯然,小矩形越多,矩形總面
2025-07-22 11:11
【總結(jié)】編號(hào)學(xué)士學(xué)位論文定積分的應(yīng)用學(xué)生姓名:艾麥提江·吾拉木江學(xué)
2025-06-05 09:58
【總結(jié)】定積分的定義?考慮正弦函數(shù)sin(x)在?0,??區(qū)間上。?分割.將?0,??區(qū)間等分,比如說(shuō)20份。?近似.將每個(gè)小區(qū)間上的面積用矩形的面積來(lái)近似。?積分和(黎曼和).將所有小矩形面積求和,得到整體面積的一個(gè)近似。?求極限.讓等分的份數(shù)趨近于無(wú)窮大,所得極限就是所求面積的精確值。分
2025-07-18 21:56
【總結(jié)】選修2-2導(dǎo)學(xué)案(18)§學(xué)習(xí)目標(biāo)與要求:在理解定積分概念和性質(zhì)的基礎(chǔ)上熟練掌握定積分的計(jì)算方法,掌握在平面直角坐標(biāo)系下用定積分計(jì)算簡(jiǎn)單的平面曲線(xiàn)圍成的圖形面積。自主學(xué)習(xí)過(guò)程:一、復(fù)習(xí)與思考:1、求曲邊梯形面積的方法步驟是什么?2、定積分的概念、幾何意義是什么?微積分基本定理的內(nèi)容是什么?二、學(xué)習(xí)探究:探究:利用定積分求平面圖形的面積yOx圖
2025-06-18 07:37
【總結(jié)】主要內(nèi)容典型例題第六章定積分及其應(yīng)用習(xí)題課(一)問(wèn)題1:曲邊梯形的面積問(wèn)題2:變速直線(xiàn)運(yùn)動(dòng)的路程存在定理廣義積分定積分定積分的性質(zhì)定積分的計(jì)算法牛頓-萊布尼茨公式()d()()bafxxFbFa??
2025-08-21 12:42
【總結(jié)】設(shè)函數(shù))(xu、)(xv在區(qū)間??ba,上具有連續(xù)導(dǎo)數(shù),則有????bababavduuvudv.定積分的分部積分公式推導(dǎo)??,vuvuuv?????,)(babauvdxuv???,??????bababadxvudxvuuv.?????bababavduuvud
2025-04-21 05:00
【總結(jié)】定積分的概念-定積分的定義及其幾何意義主講:蔡承文定積分的定義及其幾何意義函數(shù)f(x)在[a,b]上的定積分01lim()niiifx??????課題引入新課講授實(shí)踐探究課堂小結(jié)課后鞏固非均勻分布總量計(jì)算方法課題引入新課講授
2025-08-05 05:40