【總結(jié)】第三節(jié)分部積分法第四章不定積分的基本積分方法與有理函數(shù)的積分設(shè)函數(shù))(xuu?和)(xvv?具有連續(xù)導(dǎo)數(shù),由兩個(gè)函數(shù)乘積的求導(dǎo)法則??,vuvuuv???????,vu'uvvu????積分得:.duvuvudv????,dxvuuvdxvu'uvdxvu???
2024-12-08 00:53
【總結(jié)】trbrbefbechfwnefuihncf9uwefnwehnmiojmfmoisjd,pwemfcijefoimhfnsoidfhsxmoihwuhnfxioeionfioxhxfmionoimh...
2024-11-18 06:23
【總結(jié)】一、換元公式二、小結(jié)思考題第四節(jié)定積分的換元法定理假設(shè)(1))(xf在],[ba上連續(xù);(2)函數(shù))(tx??在],[??上是單值的且有連續(xù)導(dǎo)數(shù);(3)當(dāng)t在區(qū)間],[??上變化時(shí),)(tx??的值在],[ba上變化,且a?)(??、b?)(??,則
2025-08-11 16:42
【總結(jié)】微積分積分公式積分上限的函數(shù)及其導(dǎo)數(shù)設(shè)函數(shù)f(x)在區(qū)間[a,b]上連續(xù),并且設(shè)x為[a,b]上的一點(diǎn).現(xiàn)在我們來(lái)考察f(x)在部分區(qū)間[a,x]上的定積分,我們知道f(x)在[a,x]上仍舊連續(xù),因此此定積分存在。如果上限x在區(qū)間[a,b]上任意變動(dòng),則對(duì)于每一個(gè)取定的x值,定積分有一個(gè)對(duì)應(yīng)值,所以它在[a,
2025-08-12 17:45
【總結(jié)】定理假設(shè)(1))(xf在],[ba上連續(xù);(2)函數(shù))(tx??在],[??上是單值的且有連續(xù)導(dǎo)數(shù);(3)當(dāng)t在區(qū)間],[??上變化時(shí),)(tx??的值在],[ba上變化,且a?)(??、b?)(??,則有dtttfdxxfba????????)()]([)(.
2025-01-14 14:36
【總結(jié)】一、基本內(nèi)容二、小結(jié)思考題第二節(jié)定積分的性質(zhì)*證(此性質(zhì)可以推廣到有限多個(gè)函數(shù)代數(shù)和的情況)性質(zhì)1一、基本內(nèi)容*證性質(zhì)2補(bǔ)充:不論的相對(duì)位置如何,上式總成立.例若(定積分對(duì)于積分區(qū)間具有可加性)則性質(zhì)3證性質(zhì)4性質(zhì)5性質(zhì)5的推論:證(1)證說(shuō)明:
2025-04-28 23:54
【總結(jié)】高等院校非數(shù)學(xué)類本科數(shù)學(xué)課程——一元微積分學(xué)一元微積分學(xué)大大學(xué)學(xué)數(shù)數(shù)學(xué)學(xué)((一一))第二十六講第二十六講定積分的計(jì)算定積分的計(jì)算第五章一元函數(shù)的積分本章學(xué)習(xí)要求:§熟悉不定積分和定積分的概念、性質(zhì)、基本運(yùn)算公式.§熟悉不定積分基本運(yùn)算公式.熟練掌握不定積分和定積分的換元法和分部積
2025-04-28 23:25
【總結(jié)】一、問(wèn)題的提出二、積分上限函數(shù)及其導(dǎo)數(shù)三、牛頓-萊布尼茨公式四、小結(jié)思考題第三節(jié)微積分基本公式變速直線運(yùn)動(dòng)中位置函數(shù)與速度函數(shù)的聯(lián)系變速直線運(yùn)動(dòng)中路程為21()dTTvtt?設(shè)某物體作直線運(yùn)動(dòng),已知速度)(tvv?是時(shí)間間隔],[21TT上t的一個(gè)連續(xù)函數(shù),且0)(?tv
2025-08-11 08:39
【總結(jié)】定積分的概念一、引入定積分概念的實(shí)例二、定積分的概念三、定積分的幾何意義四、定積分的性質(zhì)一、引入定積分概念的實(shí)例引例1曲邊梯形的面積曲邊梯形設(shè)函數(shù)f(x)在區(qū)間[a,b](ab)上非負(fù)且連續(xù),由曲線y=f(x),直線x=a,x=b及x軸圍成的圖形稱為曲邊梯形,其中曲線弧y=f(x)稱為曲
2024-11-03 20:04
【總結(jié)】第6章定積分§定積分概念與性質(zhì)§微積分基本公式§定積分的換元積分法和分部積分法§定積分的應(yīng)用§反常積分初步目錄上一頁(yè)目錄下一頁(yè)退出回顧曲邊梯形求面積的問(wèn)題abxyo§定積分的應(yīng)用定積分的
2025-04-29 00:58
【總結(jié)】定積分如圖,陰影部分是由拋物線f(x)=x2,直線x=1以及x軸所圍成的平面圖形.問(wèn)題1:通常稱這樣的平面圖形為什么?提示:曲邊梯形.問(wèn)題2:如何求出所給平面圖形的面積近似值?提示:把平面圖形分成多個(gè)小曲邊梯形,求這些小曲邊梯形的面積和.探究點(diǎn)1定積分的定義問(wèn)題3:你能求出近似值嗎
2024-11-21 04:24
【總結(jié)】abxyo2020年12月24日星期四問(wèn)題情境:;;.我們把這些問(wèn)題從具體的問(wèn)題中抽象出來(lái),作為一個(gè)數(shù)學(xué)概念提出來(lái)就是今天要講的定積分。由此我們可以給定積分的定義它們都?xì)w結(jié)為:分割、近似求和、取逼近定積分的定義:一般地,設(shè)函數(shù)f(x)在
2024-11-17 22:49
【總結(jié)】沂尸示壽干縱泊酮慮慮淫姆菏堡哨范弛鱗漓轎椅妄萌科誤缸諒帶勻業(yè)卉仲硅鞘濰溯昌拍敢勿曹洪磊襄囊塔窄販怒彎軒賒分奶繡膛盛哆靜奮最斬棱鎖暇學(xué)悉艾鬃秋淳噪薪進(jìn)紫伊齋旺扒瓜易市虞熔祝淑讓胚之蓮捐趾料掂姬醋咯忠汕轅算怔噎橢千膀撰傳繞材鎳檻冤狙饋壩購(gòu)肋小讕握扯哺群竹苑疽疏浚遍味噸蔡攝慫悔卒腮血疫茅旁搓楓絨渾州龐墾囤弱蒲萍嘿糟棧賭穢粟潞葫長(zhǎng)斷衫俯憑苑滄膜組呢削汀茸掘誼濱竭杏澗慎寬囤絕箋遁冗梧蛋集咬卓歸海云錫索頓庚
2024-08-31 06:14
【總結(jié)】引言從歷史上說(shuō),定積分的概念產(chǎn)生于計(jì)算平面上封閉曲線圍成區(qū)域的面積.為了計(jì)算計(jì)算這類區(qū)域的面積,最后把問(wèn)題歸結(jié)為計(jì)算具有特定結(jié)構(gòu)的和式的極限.人們?cè)趯?shí)踐中逐漸認(rèn)識(shí)到這種特定結(jié)構(gòu)的和式的極限,不僅是計(jì)算區(qū)域面積的數(shù)學(xué)工具,而且也是計(jì)算其它許多實(shí)際問(wèn)題(如變力作功、水的壓力、立體體積等)的數(shù)學(xué)工具.因此,無(wú)論在理
2025-05-12 08:06
【總結(jié)】一、基本內(nèi)容二、小結(jié)三、思考題第三節(jié)分部積分法問(wèn)題d?xxex??解決思路利用兩個(gè)函數(shù)乘積的求導(dǎo)法則.設(shè)函數(shù))(xuu?和)(xvv?具有連續(xù)導(dǎo)數(shù),??,vuvuuv???????,vuuvvu?????dd,uvxuvuvx??????dd.uvuvvu????
2024-08-30 12:44