【總結(jié)】一、基本概念1.空間向量:在空間內(nèi),我們把具有大小和方向的量叫做向量,用有向線段表示.2.向量的模:向量的大小叫向量的長度或模.記為|,特別地:?①規(guī)定長度為0的向量為零向量,記作;?②模為1的向量叫做單位向量;3.相等的向量:兩個(gè)模相等且方向相同的向量稱為相等的向量.4.負(fù)向量:兩個(gè)模相等且方向相反的向量是互為負(fù)向量.如的相反向量記為-.
2025-04-17 08:18
【總結(jié)】主講教師:立體幾何復(fù)習(xí)例1.正方體A1B1C1D1-ABCD的棱長為a,在AD1和BD上分別截取AP=BQ=a.求證:(1)PQ∥平面CD1;(2)PQ⊥BC.ACDD1A1B1C1BPQ例,四棱錐P-ABCD的底面ABCD是矩形,PA⊥平
2024-11-09 09:19
【總結(jié)】.....立體幾何復(fù)習(xí)題一、位置關(guān)系1、給定空間中的直線l及平面a,條件“直線l與平面a內(nèi)無數(shù)條直線都垂直”是“直線l與平面a垂直”的()條件A.充要B.充分非必要C.必要非充分D.既非充分又
2025-04-17 05:46
【總結(jié)】一輪復(fù)習(xí)之立體幾何姓名一輪復(fù)習(xí)之立體幾何姓名1.已知三棱錐中,為等腰直角三角形,,設(shè)點(diǎn)為中點(diǎn),點(diǎn)為中點(diǎn),點(diǎn)為上一點(diǎn),且.(1)證明:平面;(2)若,求直線與平面所成角的正弦值.
2025-07-24 12:16
【總結(jié)】百度搜索李蕭蕭文檔百度搜索李蕭蕭文檔2020北京市高三一模數(shù)學(xué)理分類匯編5:立體幾何【2020北京市豐臺(tái)區(qū)一模理】5.若正四棱錐的正視圖和側(cè)視圖如右圖所示,則該幾何體的表面積是()A.4B.4410?C.8D.4411?【答案】B【2020北京市房山區(qū)一模理】10.一
2025-08-14 15:16
【總結(jié)】58《立體幾何總復(fù)習(xí)》
2024-11-09 08:45
【總結(jié)】如何學(xué)好立體幾何立體幾何在歷年的高考中有兩到三道小題,必有一道大題。雖然分值比重不是特別大,但是起著舉足輕重的作用。下面就如何學(xué)好立體幾何談幾點(diǎn)建議。一立足課本,夯實(shí)基礎(chǔ)直線和平面這些內(nèi)容,是立體幾何的基礎(chǔ),學(xué)好這部分的一個(gè)捷徑就是認(rèn)真學(xué)習(xí)定理的證明,尤其是一些很關(guān)鍵的定理的證明。例如:三垂線定理。定理的內(nèi)容都很簡單,就是線與線,線與面,面與面之間的關(guān)系的闡述。但定理的
2025-09-25 17:14
【總結(jié)】專題一淺析中心投影與平行投影中心投影與平行投影是畫空間幾何體的三視圖和直觀圖的基礎(chǔ),弄清楚中心投影與平行投影能使我們更好地掌握三視圖和直觀圖,平行投影下,與投影面平行的平面圖形留下的影子,與這個(gè)平面圖形的形狀和大小完全相同;而中心投影則不同.下表簡單歸納了中心投影與平行投影,結(jié)合實(shí)例讓我們進(jìn)一步了解平行投影和中心投影.投影定義特征分類中心投影光由一點(diǎn)向外散射形成的投
2025-04-04 05:09
【總結(jié)】立體幾何專題之二面角問題北京大學(xué)光華管理學(xué)院何洋立體幾何高考情況簡述2022年2022年2022年文科理科文科理科文科理科選擇題222222填空題111110解答題111111二面角問題高考情況簡述?除2022年北京
2025-07-20 07:01
【總結(jié)】立體幾何??甲C明題匯總考點(diǎn):線面垂直,面面垂直的判定2、如圖,已知空間四邊形中,,是的中點(diǎn)。求證:(1)平面CDE;(2)平面平面??键c(diǎn):線面平行的判定A1ED1C1B1DCBA3、如圖,在正方體中,是的中點(diǎn),求證:平面。考點(diǎn):線面垂直的判定4、已知中,面,,求證:面.
2025-03-25 06:44
【總結(jié)】1.(2013年高考遼寧卷(文))如圖,(I)求證:(II)設(shè)(文))如圖,四棱柱ABCD-A1B1C1D1的底面ABCD是正方形,O為底面中心,A1O⊥平面ABCD,.(Ⅰ)證明:A1BD//平面CD1B1;(Ⅱ)求三棱柱ABD-A1B1D1的體積.3.(2013年高考
2025-04-17 13:06
【總結(jié)】立體幾何大題練習(xí)(文科):1.如圖,在四棱錐S﹣ABCD中,底面ABCD是梯形,AB∥DC,∠ABC=90°,AD=SD,BC=CD=,側(cè)面SAD⊥底面ABCD.(1)求證:平面SBD⊥平面SAD;(2)若∠SDA=120°,且三棱錐S﹣BCD的體積為,求側(cè)面△SAB的面積.【分析】(1)由梯形ABCD,設(shè)BC=a,則CD=a,AB=2a,運(yùn)用
2025-07-24 12:10
【總結(jié)】立體幾何(理科)二輪復(fù)習(xí)建議北京理工大學(xué)附屬中學(xué)(動(dòng)、靜)畫面感操作(作圖)判斷空間想象能力推理論證能力借助頭腦中的“畫面感”來作出判斷,實(shí)現(xiàn)文字語言和圖形語言的轉(zhuǎn)化。8.設(shè)123,,lll為空間中三條互相平行且兩兩間的距離分別為4,5,6的直線.
2025-10-02 14:05
【總結(jié)】第二章點(diǎn)、直線、平面之間的位置關(guān)系空間點(diǎn)、直線、平面之間的位置關(guān)系平面自主探究學(xué)習(xí)能夠從日常生活實(shí)例中抽象出數(shù)學(xué)中所說的“平面”;理解平面的無限延展性;正確地用圖形和符號(hào)表示點(diǎn)、直線、平面以及它們之間的關(guān)系;初步掌握文字語言、圖形語言與符號(hào)語言三種語言之間的轉(zhuǎn)化;理解可以作為推理依據(jù)的三條公理.、β、γ等表示,如平面α、平面β等,也可以用表示平面的平行四邊形
2025-06-07 21:09
2025-06-07 21:56