freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

高中數(shù)學筆記總結(jié)高一至高三很全-wenkub

2023-04-19 05:15:07 本頁面
 

【正文】 線對稱:⑴關(guān)于點對稱的兩條直線一定是平行直線,且這個點到兩直線的距離相等.⑵關(guān)于某直線對稱的兩條直線性質(zhì):若兩條直線平行,則對稱直線也平行,且兩直線到對稱直線距離相等.若兩條直線不平行,則對稱直線必過兩條直線的交點,且對稱直線為兩直線夾角的角平分線.⑶點關(guān)于某一條直線對稱,用中點表示兩對稱點,則中點在對稱直線上(方程①),過兩對稱點的直線方程與對稱直線方程垂直(方程②)①②可解得所求對稱點.注:①曲線、直線關(guān)于一直線()對稱的解法:y換x,x換y. 例:曲線f(x ,y)=0關(guān)于直線y=x–2對稱曲線方程是f(y+2 ,x –2)=0. ②曲線C: f(x ,y)=0關(guān)于點(a ,b)的對稱曲線方程是f(a – x, 2b – y)=0. 二、圓的方程.1. ⑴曲線與方程:在直角坐標系中,如果某曲線上的 與一個二元方程的實數(shù)建立了如下關(guān)系:①曲線上的點的坐標都是這個方程的解.②以這個方程的解為坐標的點都是曲線上的點.那么這個方程叫做曲線方程;這條曲線叫做方程的曲線(圖形).⑵曲線和方程的關(guān)系,實質(zhì)上是曲線上任一點其坐標與方程的一種關(guān)系,曲線上任一點是方程的解;反過來,滿足方程的解所對應(yīng)的點是曲線上的點.注:如果曲線C的方程是f(x ,y)=0,那么點P0(x0 ,y)線C上的充要條件是f(x0 ,y0)=0 2. 圓的標準方程:以點為圓心,為半徑的圓的標準方程是.特例:圓心在坐標原點,半徑為的圓的方程是:.注:特殊圓的方程:①與軸相切的圓方程 ②與軸相切的圓方程 ③與軸軸都相切的圓方程 3. 圓的一般方程: .當時,方程表示一個圓,其中圓心,半徑.當時,方程表示一個點.當時,方程無圖形(稱虛圓).注:①圓的參數(shù)方程:(為參數(shù)).②方程表示圓的充要條件是:且且.③圓的直徑或方程:已知(用向量可征).4. 點和圓的位置關(guān)系:給定點及圓.①在圓內(nèi)②在圓上③在圓外5. 直線和圓的位置關(guān)系: 設(shè)圓圓:; 直線:; 圓心到直線的距離.①時,與相切;附:若兩圓相切,則相減為公切線方程.②時,與相交;附 :公共弦方程:設(shè)有兩個交點,則其公共弦方程為.③時,與相離. 附:若兩圓相離,則相減為圓心的連線的中與線方程. 由代數(shù)特征判斷:方程組用代入法,得關(guān)于(或)的一元二次方程,其判別式為,則:與相切;與相交;與相離.注:若兩圓為同心圓則,相減,不表示直線.6. 圓的切線方程:圓的斜率為的切線方程是過圓上一點的切線方程為:.①一般方程若點(x0 ,y0)在圓上,則(x – a)(x0 – a)+(y – b)(y0 – b)=R2. 特別地,過圓上一點的切線方程為.②若點(x0 ,y0)不在圓上,圓心為(a,b)則,聯(lián)立求出切線方程.7. 求切點弦方程:方法是構(gòu)造圖,則切點弦方程即轉(zhuǎn)化為公共弦方程. 如圖:ABCD四類共圓. 已知的方程…① 又以ABCD為圓為方程為…② …③,所以BC的方程即③代②,①②相切即為所求.三、曲線和方程:在直角坐標系中,如果曲線C和方程f(x,y)=0的實數(shù)解建立了如下的關(guān)系:1) 曲線C上的點的坐標都是方程f(x,y)=0的解(純粹性);2) 方程f(x,y)=0的解為坐標的點都在曲線C上(完備性)。 3)定義法, 4)待定系數(shù)法. 高中數(shù)學第八章圓錐曲線方程 167。a,─b163。Rx179。09. 立體幾何 知識要點一、 平面.1. 經(jīng)過不在同一條直線上的三點確定一個面.注:兩兩相交且不過同一點的四條直線必在同一平面內(nèi).2. 兩個平面可將平面分成3或4部分.(①兩個平面平行,②兩個平面相交)3. 過三條互相平行的直線可以確定1或3個平面.(①三條直線在一個平面內(nèi)平行,②三條直線不在一個平面內(nèi)平行)[注]:三條直線可以確定三個平面,三條直線的公共點有0或1個.4. 三個平面最多可把空間分成 8 部分.(X、Y、Z三個方向)二、 空間直線.1. 空間直線位置分三種:相交、平行、異面. 相交直線—共面有反且有一個公共點;平行直線—共面沒有公共點;異面直線—不同在任一平面內(nèi)[注]:①兩條異面直線在同一平面內(nèi)射影一定是相交的兩條直線.()(可能兩條直線平行,也可能是點和直線等)②直線在平面外,指的位置關(guān)系:平行或相交③若直線a、b異面,a平行于平面,b與的關(guān)系是相交、平行、在平面內(nèi).④兩條平行線在同一平面內(nèi)的射影圖形是一條直線或兩條平行線或兩點.⑤在平面內(nèi)射影是直線的圖形一定是直線.()(射影不一定只有直線,也可以是其他圖形)⑥在同一平面內(nèi)的射影長相等,則斜線長相等.()(并非是從平面外一點向這個平面所引的垂線段和斜線段)⑦是夾在兩平行平面間的線段,若,則的位置關(guān)系為相交或平行或異面.2. 異面直線判定定理:過平面外一點與平面內(nèi)一點的直線和平面內(nèi)不經(jīng)過該點的直線是異面直線.(不在任何一個平面內(nèi)的兩條直線)3. 平行公理:平行于同一條直線的兩條直線互相平行.4. 等角定理:如果一個角的兩邊和另一個角的兩邊分別平行并且方向相同,那么這兩個角相等(如下圖). (二面角的取值范圍) (直線與直線所成角) (斜線與平面成角) (直線與平面所成角)(向量與向量所成角推論:如果兩條相交直線和另兩條相交直線分別平行,那么這兩組直線所成銳角(或直角)相等.5. 兩異面直線的距離:公垂線的長度.空間兩條直線垂直的情況:相交(共面)垂直和異面垂直.是異面直線,則過外一點P,過點P且與都平行平面有一個或沒有,但與距離相等的點在同一平面內(nèi). (或在這個做出的平面內(nèi)不能叫與平行的平面)三、 直線與平面平行、直線與平面垂直.1. 空間直線與平面位置分三種:相交、平行、在平面內(nèi).2. 直線與平面平行判定定理:如果平面外一條直線和這個平面內(nèi)一條直線平行,那么這條直線和這個平面平行.(“線線平行,線面平行”)[注]:①直線與平面內(nèi)一條直線平行,則∥. ()(平面外一條直線)②直線與平面內(nèi)一條直線相交,則與平面相交. ()(平面外一條直線)③若直線與平面平行,則內(nèi)必存在無數(shù)條直線與平行. (√)(不是任意一條直線,可利用平行的傳遞性證之)④兩條平行線中一條平行于一個平面,那么另一條也平行于這個平面. ()(可能在此平面內(nèi))⑤平行于同一直線的兩個平面平行.()(兩個平面可能相交)⑥平行于同一個平面的兩直線平行.()(兩直線可能相交或者異面)⑦直線與平面、所成角相等,則∥.()(、可能相交)3. 直線和平面平行性質(zhì)定理:如果一條直線和一個平面平行,經(jīng)過這條直線的平面和這個平面相交,那么這條直線和交線平行.(“線面平行,線線平行”)4. 直線與平面垂直是指直線與平面任何一條直線垂直,過一點有且只有一條直線和一個平面垂直,過一點有且只有一個平面和一條直線垂直. l 若⊥,⊥,得⊥(三垂線定理),得不出⊥. 因為⊥,但不垂直O(jiān)A.l 三垂線定理的逆定理亦成立.直線與平面垂直的判定定理一:如果一條直線和一個平面內(nèi)的兩條相交直線都垂直,那么這兩條直線垂直于這個平面.(“線線垂直,線面垂直”)直線與平面垂直的判定定理二:如果平行線中一條直線垂直于一個平面,那么另一條也垂直于這個平面.推論:如果兩條直線同垂直于一個平面,那么這兩條直線平行.[注]:①垂直于同一平面的兩個平面平行.()(可能相交,垂直于同一條直線的兩個平面平行)②垂直于同一直線的兩個平面平行.(√)(一條直線垂直于平行的一個平面,必垂直于另一個平面)③垂直于同一平面的兩條直線平行.(√)5. ⑴垂線段和斜線段長定理:從平面外一點向這個平面所引的垂線段和斜線段中,①射影相等的兩條斜線段相等,射影較長的斜線段較長;②相等的斜線段的射影相等,較長的斜線段射影較長;③垂線段比任何一條斜線段短.[注]:垂線在平面的射影為一個點. [一條直線在平面內(nèi)的射影是一條直線.()]⑵射影定理推論:如果一個角所在平面外一點到角的兩邊的距離相等,那么這點在平面內(nèi)的射影在這個角的平分線上四、 平面平行與平面垂直.1. 空間兩個平面的位置關(guān)系:相交、平行.2. 平面平行判定定理:如果一個平面內(nèi)有兩條相交直線都平行于另一個平面,哪么這兩個平面平行.(“線面平行,面面平行”)推論:垂直于同一條直線的兩個平面互相平行;平行于同一平面的兩個平面平行.[注]:一平面間的任一直線平行于另一平面.3. 兩個平面平行的性質(zhì)定理:如果兩個平面平行同時和第三個平面相交,那么它們交線平行.(“面面平行,線線平行”)4. 兩個平面垂直性質(zhì)判定一:兩個平面所成的二面角是直二面角,則兩個平面垂直.兩個平面垂直性質(zhì)判定二:如果一個平面與一條直線垂直,那么經(jīng)過這條直線的平面垂直于這個平面.(“線面垂直,面面垂直”)注:如果兩個二面角的平面對應(yīng)平面互相垂直,則兩個二面角沒有什么關(guān)系.5. 兩個平面垂直性質(zhì)定理:如果兩個平面垂直,那么在一個平面內(nèi)垂直于它們交線的直線也垂直于另一個平面.推論:如果兩個相交平面都垂直于第三平面,則它們交線垂直于第三平面.證明:如圖,找O作OA、OB分別垂直于,因為則. 6. 兩異面直線任意兩點間的距離公式:(為銳角取加,為鈍取減,綜上,都取加則必有)7. ⑴最小角定理:(為最小角,如圖)⑵最小角定理的應(yīng)用(∠PBN為最小角)簡記為:成角比交線夾角一半大,且又比交線夾角補角一半長,一定有4條.成角比交線夾角一半大,又比交線夾角補角小,一定有2條.成角比交線夾角一半大,又與交線夾角相等,一定有3條或者2條.成角比交線夾角一半小,又與交線夾角一半小,一定有1條或者沒有. 五、 棱錐、棱柱.1. 棱柱.⑴①直棱柱側(cè)面積:(為底面周長,是高)該公式是利用直棱柱的側(cè)面展開圖為矩形得出的.②斜棱住側(cè)面積:(是斜棱柱直截面周長,是斜棱柱的側(cè)棱長)該公式是利用斜棱柱的側(cè)面展開圖為平行四邊形得出的.⑵{四棱柱}{平行六面體}{直平行六面體}{長方體}{正四棱柱}{正方體}.{直四棱柱}{平行六面體}={直平行六面體}.⑶棱柱具有的性質(zhì):①棱柱的各個側(cè)面都是平行四邊形,所有的側(cè)棱都相等;直棱柱的各個側(cè)面都是矩形;正棱柱的各個側(cè)面都是全等的矩形.②棱柱的兩個底面與平行于底面的截面是對應(yīng)邊互相平行的全等多邊形.③過棱柱不相鄰的兩條側(cè)棱的截面都是平行四邊形.注:①棱柱有一個側(cè)面和底面的一條邊垂直可推測是直棱柱. ()(直棱柱不能保證底面是鉅形可如圖)②(直棱柱定義)棱柱有一條側(cè)棱和底面垂直.⑷平行六面體:定理一:平行六面體的對角線交于一點,并且在交點處互相平分.[注]:四棱柱的對角線不一定相交于一點.定理二:長方體的一條對角線長的平方等于一個頂點上三條棱長的平方和.推論一:長方體一條對角線與同一個頂點的三條棱所成的角為,則.推論二:長方體一條對角線與同一個頂點的三各側(cè)面所成的角為,則.[注]:①有兩個側(cè)面是矩形的棱柱是直棱柱.()(斜四面體的兩個平行的平面可以為矩形)②各側(cè)面都是正方形的棱柱一定是正棱柱.()(應(yīng)是各側(cè)面都是正方形的直棱柱才行)③對角面都是全等的矩形的直四棱柱一定是長方體.()(只能推出對角線相等,推不出底面為矩形)④棱柱成為直棱柱的一個必要不充分條件是棱柱有一條側(cè)棱與底面的兩條邊垂直. (兩條邊可能相交,可能不相交,若兩條邊相交,則應(yīng)是充要條件)2. 棱錐:棱錐是一個面為多邊形,其余各面是有一個公共頂點的三角形.[注]:①一個棱錐可以四各面都為直角三角形.②一個棱柱可以分成等體積的三個三棱錐;所以.⑴①正棱錐定義:底面是正多邊形;頂點在底面的射影為底面的中心.[注]:i. 正四棱錐的各個側(cè)面都是全等的等腰三角形.(不是等邊三角形)ii. 正四面體是各棱相等,而正三棱錐是底面為正△側(cè)棱與底棱不一定相等iii. 正棱錐定義的推論:若一個棱錐的各個側(cè)面都是全等的等腰三角形(即側(cè)棱相等);底面為正多邊形.②正棱錐的側(cè)面積:(底面周長為,斜高為)③棱錐的側(cè)面積與底面積的射影公式:(側(cè)面與底面成的二面角為)附: 以知⊥,為二面角. 則①,②,③ ①②③得.注:S為任意多邊形的面積(可分別多個三角形的方法).⑵棱錐具有的性質(zhì):①正棱錐各側(cè)棱相等,各側(cè)面都是全等的等腰三角形,各等腰三角形底邊上的高相等(它叫做正棱錐的斜高).②正棱錐的高、斜高和斜高在底面內(nèi)的射影組成一個直角三角形,正棱錐的高、側(cè)棱、側(cè)棱在底面內(nèi)的射影也組成一個直角三角形.⑶特殊棱錐的頂點在底面的射影位置:①棱錐的側(cè)棱長均相等,則頂點在底面上的射影為底面多邊形的外心.②棱錐的側(cè)棱與底面所成的角均相等,則頂點在底面上的射影為底面多邊形的外心.③棱錐的各側(cè)面與底面所成角均相等,則頂點在底面上的射影為底面多邊形內(nèi)心.④棱錐的頂點到底面各邊距離相等,則頂點在底面上的射影為底面多邊形內(nèi)心.⑤三棱錐有兩組對棱垂直,則頂點在底面的射影為三角形垂心.⑥三棱錐的三條側(cè)棱兩兩垂直,則頂點在底面上的射影為三角形的垂心.⑦每個四面體都有外接球,球心0是各條棱的中垂面的交點,此點到各頂點的距離等于球半徑;⑧每個四面體都有內(nèi)切球,球心是四面體各個二面角的平分面的交點,到各面的距離等于半徑.[注]:i. 各個側(cè)面都是等腰
點擊復(fù)制文檔內(nèi)容
數(shù)學相關(guān)推薦
文庫吧 www.dybbs8.com
備案圖片鄂ICP備17016276號-1