【總結(jié)】高中數(shù)學(xué)函數(shù)專題1.已知在實(shí)數(shù)域R上可導(dǎo)的函數(shù)對任意實(shí)數(shù)都有若存在實(shí)數(shù),使,求證:(1);(2)上是單調(diào)函數(shù)證明:(1)又,(2)即在R上是單調(diào)遞增函數(shù).2.已知拋物線C的方程為為焦點(diǎn),直線與C交于A、B兩點(diǎn),P為AB的中點(diǎn),直線過P、F點(diǎn)。(1)求直線的斜率關(guān)于的解析式,并指出定義域;(2)求函數(shù)的反函數(shù);(3)求與的夾角的取值范圍。(4)解不等
2025-08-05 18:29
【總結(jié)】學(xué)科數(shù)學(xué)課題名稱函數(shù)恒成立問題——參變分離法周次教學(xué)目標(biāo)教學(xué)重難點(diǎn)函數(shù)恒成立問題——參變分離法一、基礎(chǔ)知識(shí):1、參變分離:顧名思義,就是在不等式中含有兩個(gè)字母時(shí)(一個(gè)視為變量,另一個(gè)視為參數(shù)),可利用不等式的等價(jià)變形讓兩個(gè)字母分居不等號(hào)的兩側(cè),即不等號(hào)的每一側(cè)都是只含有一個(gè)字母的表達(dá)式。然后可利用其中一個(gè)變量的范圍求出另一變量
2025-03-24 12:16
【總結(jié)】【知識(shí)要點(diǎn)】一、數(shù)列的通項(xiàng)公式如果數(shù)列的第項(xiàng)和項(xiàng)數(shù)之間的關(guān)系可以用一個(gè)公式來表示,.二、數(shù)列的通項(xiàng)的常見求法:通項(xiàng)五法1、歸納法:先通過計(jì)算數(shù)列的前幾項(xiàng),再觀察數(shù)列中的項(xiàng)與系數(shù),根據(jù)與項(xiàng)數(shù)的關(guān)系,猜想數(shù)列的通項(xiàng)公式,最后再證明.2、公式法:若在已知數(shù)列中存在:的關(guān)系,可采用求等差數(shù)列、等比數(shù)列的通項(xiàng)公式的求法,確定數(shù)列的通項(xiàng);若在已知數(shù)列中存在:的關(guān)系,可以利用項(xiàng)
2025-04-04 05:08
【總結(jié)】......“恒成立問題”與“存在性問題”的基本解題策略一、“恒成立問題”與“存在性問題”的基本類型恒成立、能成立、恰成立問題的基本類型1、恒成立問題的轉(zhuǎn)化:恒成立;2、能成立問題的轉(zhuǎn)化:能成立;3、恰成立問題的轉(zhuǎn)化:在M上恰成立的解集為M另一轉(zhuǎn)化方法:若在D上恰成立,等價(jià)于在D上的最小值,若在D上恰成立,則等價(jià)于在D
2025-03-25 02:09
【總結(jié)】,形成方法,思想的先決條件,因而我們對記憶能力應(yīng)引起足夠的重視.下面來試試你的記憶能力:1.求一個(gè)函數(shù)的解析式和一個(gè)函數(shù)的反函數(shù)時(shí),你標(biāo)注了該函數(shù)的定義域了嗎?2.函數(shù)與其反函數(shù)之間的一個(gè)有用的結(jié)論:3.原函數(shù)在區(qū)間上單調(diào)遞增,則一定存在反函數(shù),且反函數(shù)也單調(diào)遞增;但一個(gè)函數(shù)存在反函數(shù),此函數(shù)不一定單調(diào).4.160。判斷一個(gè)函數(shù)的奇偶性時(shí),你注意到函數(shù)的定義域是否關(guān)于原點(diǎn)對稱
2025-01-15 10:12
【總結(jié)】實(shí)用標(biāo)準(zhǔn)
2025-07-23 11:21
【總結(jié)】專題一第5講 導(dǎo)數(shù)及其應(yīng)用一、選擇題(每小題4分,共24分)1.已知函數(shù)f(x)的導(dǎo)函數(shù)為f′(x),且滿足f(x)=2xf′(1)+lnx,則f′(1)=A.-e B.-1C.1 D.e解析 f′(x)=2f′(1)+,令x=1,得f′(1)=2f′(1)+1,∴f′(1)=-.答案 B2.(2012·泉州
2025-08-05 17:15
【總結(jié)】12第十一章穩(wěn)恒電流和穩(wěn)恒磁場一選擇題1.兩根截面大小相同的直鐵絲和直銅絲串聯(lián)后接入一直流電路,鐵絲和銅絲內(nèi)的電流密度和電場強(qiáng)度分別為J1,E1和J2,E2,則:()A.J1=J2,E1=E2B.J1J2,E1=E2C.J1=J2,E1E2解:直鐵絲和直銅絲串聯(lián),所
2025-06-07 21:32
【總結(jié)】解:(1)∵f'(x)=x﹣+(a﹣1)=∴當(dāng)﹣1<a≤0時(shí),x∈(0,﹣a)時(shí),f'(x)>0,f(x)為增函數(shù);x∈(﹣a,1)時(shí),f'(x)<0,f(x)為減函數(shù);x∈(1,+∞)時(shí),f'(x)>0,f(x)為增函數(shù).當(dāng)a≤﹣1時(shí),x∈(0,1)時(shí),f'(x)>0,f(x)為增函數(shù);x∈(1,﹣a)時(shí),f'
2025-03-25 03:45
【總結(jié)】利用函數(shù)的導(dǎo)數(shù)求解“恒成立”求參數(shù)范圍問題(1)恒成立問題求參數(shù)范圍:例1已知函數(shù).(Ⅰ)若,求的取值范圍;(1)求a,b的值,(2)若對于任意的[0,3]都有成立,求c的取值范圍答案:1.解:(1)a=-3,b=4(2)9+8c9(2)恒成立問題求參數(shù)范圍:分離參數(shù)法。例2.已知函數(shù)(1)時(shí)
2025-03-24 12:44
【總結(jié)】高一數(shù)學(xué)必修一專題復(fù)習(xí)第一章集合與函數(shù)概念知識(shí)架構(gòu)集合集合表示法集合的運(yùn)算集合的關(guān)系列舉法描述法圖示法包含相等子集與真子集交集并集補(bǔ)集函數(shù)函數(shù)及其表示函數(shù)基本性質(zhì)單調(diào)性與最值函數(shù)的概念函數(shù)
2025-04-17 12:27
【總結(jié)】高中數(shù)學(xué)講義之集合專題 集合一、學(xué)習(xí)要求1、理解集合,子集,并集,交集,補(bǔ)集的概念;了解屬于、包含、相等關(guān)系的意義;2、掌握集合相關(guān)的術(shù)語和符號(hào),并會(huì)運(yùn)用它們正確表示一些簡單的集合;3、掌握集合的并、交、補(bǔ)運(yùn)算.知識(shí)網(wǎng)絡(luò)結(jié)構(gòu)圖:概念絕對值不等式的解法↑
2025-04-04 05:15
【總結(jié)】高中課程復(fù)習(xí)專題——數(shù)學(xué)立體幾何一空間幾何體㈠空間幾何體的類型1多面體:由若干個(gè)平面多邊形圍成的幾何體。圍成多面體的各個(gè)多邊形叫做多面體的面,相鄰兩個(gè)面的公共邊叫做多面體的棱,棱與棱的公共點(diǎn)叫做多面體的頂點(diǎn)。2旋轉(zhuǎn)體:把一個(gè)平面圖形繞它所在的平面內(nèi)的一條定直線旋轉(zhuǎn)形成了封閉幾何體。其中,這條直線稱為
2025-04-04 05:14
【總結(jié)】2014高三數(shù)學(xué)專題抽象函數(shù)特殊模型和抽象函數(shù)特殊模型抽象函數(shù)正比例函數(shù)f(x)=kx(k≠0)f(x+y)=f(x)+f(y)冪函數(shù)f(x)=xnf(xy)=f(x)f(y)[或]指數(shù)函數(shù)f(x)=ax(a0且a≠1)f(x+y)=f(x)f(y)[對數(shù)函數(shù)f(x)=logax(a0且a≠1)f
2025-04-04 02:43
【總結(jié)】第一章集合與函數(shù)概念知識(shí)架構(gòu)集合集合表示法集合的運(yùn)算集合的關(guān)系列舉法描述法圖示法包含相等子集與真子集交集并集補(bǔ)集函數(shù)函數(shù)及其表示函數(shù)基本性質(zhì)單調(diào)性與最值函數(shù)的概念函數(shù)的奇偶性函數(shù)的表示
2025-08-05 18:20