freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

第1-4課時(shí)函數(shù)問(wèn)題的題型與方法-wenkub

2023-04-09 06:46:58 本頁(yè)面
 

【正文】 )為了使全程運(yùn)輸成本最小,汽車應(yīng)以多大速度行駛.分析:(1)難度不大,抓住關(guān)系式:全程運(yùn)輸成本=單位時(shí)間運(yùn)輸成本全程運(yùn)輸時(shí)間,而全程運(yùn)輸時(shí)間=(全程距離)247。一般地,函數(shù)思想是構(gòu)造函數(shù)從而利用函數(shù)的性質(zhì)解題,經(jīng)常利用的性質(zhì)是:f(x)、f(x)的單調(diào)性、奇偶性、周期性、最大值和最小值、圖像變換等,要求我們熟練掌握的是一次函數(shù)、二次函數(shù)、指數(shù)函數(shù)、對(duì)數(shù)函數(shù)、三角函數(shù)的具體特性。函數(shù)和多元方程沒(méi)有什么本質(zhì)的區(qū)別,如函數(shù)y=f(x),就可以看作關(guān)于x、y的二元方程f(x)-y=0。(Ⅱ)函數(shù)的概念型問(wèn)題函數(shù)概念的復(fù)習(xí)當(dāng)然應(yīng)該從函數(shù)的定義開始.函數(shù)有二種定義,一是變量觀點(diǎn)下的定義,一是映射觀點(diǎn)下的定義.復(fù)習(xí)中不能僅滿足對(duì)這兩種定義的背誦,而應(yīng)在判斷是否構(gòu)成函數(shù)關(guān)系,兩個(gè)函數(shù)關(guān)系是否相同等問(wèn)題中得到深化,更應(yīng)在有關(guān)反函數(shù)問(wèn)題中正確運(yùn)用.具體要求是:1.深化對(duì)函數(shù)概念的理解,明確函數(shù)三要素的作用,并能以此為指導(dǎo)正確理解函數(shù)與其反函數(shù)的關(guān)系.2.系統(tǒng)歸納求函數(shù)定義域、值域、解析式、反函數(shù)的基本方法.在熟練有關(guān)技能的同時(shí),注意對(duì)換元、待定系數(shù)法等數(shù)學(xué)思想方法的運(yùn)用.3.通過(guò)對(duì)分段定義函數(shù),復(fù)合函數(shù),抽象函數(shù)等的認(rèn)識(shí),進(jìn)一步體會(huì)函數(shù)關(guān)系的本質(zhì),進(jìn)一步樹立運(yùn)動(dòng)變化,相互聯(lián)系、制約的函數(shù)思想,為函數(shù)思想的廣泛運(yùn)用打好基礎(chǔ).本部分內(nèi)容的重點(diǎn)是不僅從認(rèn)識(shí)上,而且從處理函數(shù)問(wèn)題的指導(dǎo)上達(dá)到從三要素總體上把握函數(shù)概念的要求,對(duì)確定函數(shù)三要素的常用方法有個(gè)系統(tǒng)的認(rèn)識(shí),對(duì)于給出解析式的函數(shù),會(huì)求其反函數(shù).本部分的難點(diǎn)首先在于克服“函數(shù)就是解析式”的片面認(rèn)識(shí),真正明確不僅函數(shù)的對(duì)應(yīng)法則,而且其定義域都包含著對(duì)函數(shù)關(guān)系的制約作用,并真正以此作為處理問(wèn)題的指導(dǎo).其次在于確定函數(shù)三要素、求反函數(shù)等課題的綜合性,不僅要用到解方程,解不等式等知識(shí),還要用到換元思想、方程思想等與函數(shù)有關(guān)概念的結(jié)合.函數(shù)的概念是復(fù)習(xí)函數(shù)全部?jī)?nèi)容和建立函數(shù)思想的基礎(chǔ),不能僅滿足會(huì)背誦定義,會(huì)做一些有關(guān)題目,要從聯(lián)系、應(yīng)用的角度求得理解上的深度,還要對(duì)確定函數(shù)三要素的類型、方法作好系統(tǒng)梳理,這樣才能進(jìn)一步為綜合運(yùn)用打好基礎(chǔ).復(fù)習(xí)的重點(diǎn)是求得對(duì)這些問(wèn)題的系統(tǒng)認(rèn)識(shí),而不是急于做過(guò)難的綜合題.㈠深化對(duì)函數(shù)概念的認(rèn)識(shí)例1.下列函數(shù)中,不存在反函數(shù)的是         ?。? ) 分析:處理本題有多種思路.分別求所給各函數(shù)的反函數(shù),看是否存在是不好的,因?yàn)檫^(guò)程太繁瑣.從概念看,這里應(yīng)判斷對(duì)于給出函數(shù)值域內(nèi)的任意值,依據(jù)相應(yīng)的對(duì)應(yīng)法則,是否在其定義域內(nèi)都只有惟一確定的值與之對(duì)應(yīng),因此可作出給定函數(shù)的圖象,用數(shù)形結(jié)合法作判斷,這是常用方法,請(qǐng)讀者自己一試.此題作為選擇題還可采用估算的方法.對(duì)于D,y=3是其值域內(nèi)一個(gè)值,但若y=3,則可能x=2(2>1),也可能x=1(1≤1).依據(jù)概念,則易得出D中函數(shù)不存在反函數(shù).于是決定本題選D.說(shuō)明:不論采取什么思路,理解和運(yùn)用函數(shù)與其反函數(shù)的關(guān)系是這里解決問(wèn)題的關(guān)鍵.由于函數(shù)三要素在函數(shù)概念中的重要地位,那么掌握確定函數(shù)三要素的基本方法當(dāng)然成了函數(shù)概念復(fù)習(xí)中的重要課題.㈡系統(tǒng)小結(jié)確定函數(shù)三要素的基本類型與常用方法1.求函數(shù)定義域的基本類型和常用方法由給定函數(shù)解析式求其定義域這類問(wèn)題的代表,實(shí)際上是求使給定式有意義的x的取值范圍.它依賴于對(duì)各種式的認(rèn)識(shí)與解不等式技能的熟練.這里的最高層次要求是給出的解析式還含有其他字例2.已知函數(shù)定義域?yàn)?0,2),求下列函數(shù)的定義域:分析:x的函數(shù)f(x)是由u=x與f(u)這兩個(gè)函數(shù)復(fù)合而成的復(fù)合函數(shù),其中x是自變量,u是中間變量.由于f(x),f(u)是同一個(gè)函數(shù),故(1)為已知0<u<2,即0<x<2.求x的取值范圍.解:(1)由0<x<2, 得 說(shuō)明:本例(1)是求函數(shù)定義域的第二種類型,即不給出f(x)的解析式,由f(x)的定義域求函數(shù)f[g(x)]的定義域.關(guān)鍵在于理解復(fù)合函數(shù)的意義,用好換元法.(2)是二種類型的綜合.求函數(shù)定義域的第三種類型是一些數(shù)學(xué)問(wèn)題或?qū)嶋H問(wèn)題中產(chǎn)生的函數(shù)關(guān)系,求其定義域,后面還會(huì)涉及到.2.求函數(shù)值域的基本類型和常用方法函數(shù)的值域是由其對(duì)應(yīng)法則和定義域共同決定的.其類型依解析式的特點(diǎn)分可分三類:(1)求常見(jiàn)函數(shù)值域;(2)求由常見(jiàn)函數(shù)復(fù)合而成的函數(shù)的值域;(3)求由常見(jiàn)函數(shù)作某些“運(yùn)算”而得函數(shù)的值域. 3.求函數(shù)解析式舉例例3.已知xy<0,并且4x9y=36.由此能否確定一個(gè)函數(shù)關(guān)系y=f(x)?如果能,求出其解析式、定義域和值域;如果不能,請(qǐng)說(shuō)明理由.分析: 4x9y=36在解析幾何中表示雙曲線的方程,僅此當(dāng)然不能確定一個(gè)函數(shù)關(guān)系y=f(x),但加上條件xy<0呢?所以因此能確定一個(gè)函數(shù)關(guān)系y=f(x).其定義域?yàn)?∞,3)∪(3,+∞).且不難得到其值域?yàn)?∞,0)∪(0,+∞).說(shuō)明:本例從某種程度上揭示了函數(shù)與解析幾何中方程的內(nèi)在聯(lián)系.任何一個(gè)函數(shù)的解析式都可看作一個(gè)方程,在一定條件下,方程也可轉(zhuǎn)化為表示函數(shù)的解析式.求函數(shù)解析式還有兩類問(wèn)題:(1)求常見(jiàn)函數(shù)的解析式.由于常見(jiàn)函數(shù)(一次函數(shù),二次函數(shù),冪函數(shù),指數(shù)函數(shù),對(duì)數(shù)函數(shù),三角函數(shù)及反三角函數(shù))的解析式的結(jié)構(gòu)形式是確定的,故可用待定系數(shù)法確定其解析式.這里不再舉例.(2)從生產(chǎn)、生活中產(chǎn)生的函數(shù)關(guān)系的確定.這要把有關(guān)學(xué)科知識(shí),生活經(jīng)驗(yàn)與函數(shù)概念結(jié)合起來(lái),舉例也宜放在函數(shù)復(fù)習(xí)的以后部分.(Ⅲ)函數(shù)與方程的思想方法函數(shù)思想,是指用函數(shù)的概念和性質(zhì)去分析問(wèn)題、轉(zhuǎn)化問(wèn)題和解決問(wèn)題。再看結(jié)論(Ⅲ):原不等式即,即,注意到,則,則原不等式即為即,令,則原不等式即化為,即,因?yàn)?,則,所以成立,即(Ⅲ)的結(jié)論成立。即不存在,使得。設(shè)為不相等的兩實(shí)數(shù),則由題設(shè)條件可得:和。“消元”的模式并不難唯一,這里提供一個(gè)與標(biāo)準(zhǔn)解答不同的“消元”設(shè)想,供參考。(II)當(dāng)時(shí), 當(dāng)時(shí), 當(dāng)時(shí), 所以(III)設(shè)銷售商的一次訂購(gòu)量為x個(gè)時(shí),工廠獲得的利潤(rùn)為L(zhǎng)元,則 當(dāng)時(shí),;當(dāng)時(shí), 因此,當(dāng)銷售商一次訂購(gòu)500個(gè)零件時(shí),該廠獲得的利潤(rùn)是6000元; 如果訂購(gòu)1000個(gè),利潤(rùn)是11000元。(2) 點(diǎn)P (x0, y0 ) (0 x0 1 )在曲線上,求曲線在點(diǎn)P處的切線與x軸和y軸的正向所圍成的三角形面積表達(dá)式(用x0表達(dá)).證明:(I)故f(x)在(0,1上是減函數(shù),而在(1,+∞)上是增函數(shù),由0ab且f(a)=f(b)得0a1b和, 故(II)0x1時(shí),曲線y=f(x)在點(diǎn)P(x0,y0)處的切線方程為:∴切線與x軸、y軸正向的交點(diǎn)為故所求三角形面積聽表達(dá)式為:2. (2004高考廣東卷,21)設(shè)函數(shù) 其中常數(shù)m為整數(shù). (1) 當(dāng)m為何值時(shí), (2) 定理: 若函數(shù)g(x) 在[a, b ]上連續(xù),且g(a) 與g(b)異號(hào),則至少存在一點(diǎn)x0∈(a,b),使g(x0)=0. 試用上述定理證明:當(dāng)整數(shù)m1時(shí),方程f(x)= 0,在[emm ,e2mm ]內(nèi)有兩個(gè)實(shí)根.(I)解:函數(shù)f(x)=xln(x+m),x∈(m,+∞)連續(xù),且當(dāng)x∈(m,1m)時(shí),f ’(x)0,f(x)為減函數(shù),f(x)f(1m)當(dāng)x∈(1m, +∞)時(shí),f ’(x)0,f(x)為增函數(shù),f(x)f(1m)根據(jù)函數(shù)極值判別方法,f(1m)=1m為極小值,而且對(duì)x∈(m, +∞)都有f(x)≥f(1m)=1m故當(dāng)整數(shù)m≤1時(shí),f(x) ≥1m≥0(II)證明:由(I)知,當(dāng)整數(shù)m1時(shí),f(1m)=1m0,函數(shù)f(x)=xln(x+m),在 上為連續(xù)減函數(shù).由所給定理知,存在唯一的而當(dāng)整數(shù)m1時(shí),類似地,當(dāng)整數(shù)m1時(shí),函數(shù)f(x)=xln(x+m),在 上為連續(xù)增函數(shù)且 f(1m)與異號(hào),由所給定理知,存在唯一的故當(dāng)m1時(shí),方程f(x)=0在內(nèi)有兩個(gè)實(shí)根。6.能夠運(yùn)用函數(shù)的性質(zhì)、指數(shù)函數(shù)和對(duì)數(shù)函數(shù)的性質(zhì)解決某些簡(jiǎn)單的實(shí)際問(wèn)題。2.了解函數(shù)的單調(diào)性和奇偶性的概念,掌握判斷一些簡(jiǎn)單函數(shù)的單調(diào)性和奇偶性的方法,并能利用函數(shù)的性質(zhì)簡(jiǎn)化函數(shù)圖象的繪制過(guò)程。3.了解反函數(shù)的概念及互為反函數(shù)的函數(shù)圖象間的關(guān)系,會(huì)求一些簡(jiǎn)單函數(shù)的反函數(shù)。二.考試要求:1.靈活運(yùn)用函數(shù)概念、性質(zhì)和不等式等知識(shí)以及分類討論等方法,解函數(shù)綜合題。3.(2004年春季高考北京卷,19)某廠生產(chǎn)某種零件,每個(gè)零件的成本為40元,出廠單價(jià)定為60元,該廠為鼓勵(lì)銷售商訂購(gòu),決定當(dāng)一次訂購(gòu)量超過(guò)100個(gè)時(shí),每多訂購(gòu)一個(gè),但實(shí)際出廠單價(jià)不能低于51元。4.已知f(x)=(x∈R)在區(qū)間[-1,1]上是增函數(shù).(Ⅰ)求實(shí)數(shù)a的值組成的集合A;(Ⅱ)設(shè)關(guān)于x的方程f(x)=的兩個(gè)非零實(shí)根為x:是否存在實(shí)數(shù)m,使得不等式m2+tm+1≥|x1-x2|對(duì)任意a∈A及t∈[-1,1]恒成立?若存在,求m的取值范圍;若不存在,請(qǐng)說(shuō)明理由.分析:本小題主要考查函數(shù)的單調(diào)性,導(dǎo)數(shù)的應(yīng)用和不等式等有關(guān)知識(shí),考查數(shù)形結(jié)合及分類討論思想和靈活運(yùn)用數(shù)學(xué)知識(shí)分析問(wèn)題和解決問(wèn)題的能力.解:(Ⅰ)f'(x)== ,
點(diǎn)擊復(fù)制文檔內(nèi)容
法律信息相關(guān)推薦
文庫(kù)吧 www.dybbs8.com
備案圖片鄂ICP備17016276號(hào)-1