【總結(jié)】歲月的沉淀讓人生更加精彩!“角平分線問(wèn)題”中的輔助線的添加技巧5高手出招1:角分線,分兩邊,對(duì)稱全等要記全。(牢記,角平分線就是一個(gè)對(duì)稱軸,所以可以將其中的一個(gè)△翻轉(zhuǎn)180度,構(gòu)造全等。)基本圖形例題:1.已知,CE、AD是△ABC
2025-06-27 23:44
【總結(jié)】輔助線的作法正確熟練地掌握輔助線的作法和規(guī)律,也是迅速解題的關(guān)鍵,如何準(zhǔn)確地作出需要的輔助線,簡(jiǎn)單介紹幾種方法:方法一:從已知出發(fā)作出輔助線:DABCEFMN例1.已知:在△ABC中,AD是BC邊的中線,E是AD的中點(diǎn),F(xiàn)是BE延長(zhǎng)線與AC的交點(diǎn),求證:AF=分析:題設(shè)中含有D是BC中點(diǎn),E是AD中點(diǎn),由此可以聯(lián)想到三角形中與邊中點(diǎn)有密切聯(lián)
2025-06-18 13:03
【總結(jié)】??初中平面幾何概念??????1過(guò)兩點(diǎn)有且只有一條直線??????2兩點(diǎn)之間線段最短3同角或等角的補(bǔ)角相等4同角或等角的余角相等5過(guò)一點(diǎn)有且只有一條直線和已知直線垂直
2025-09-25 14:56
【總結(jié)】(高中)平面幾何基礎(chǔ)知識(shí)(基本定理、基本性質(zhì))1.勾股定理(畢達(dá)哥拉斯定理)(廣義勾股定理)(1)銳角對(duì)邊的平方,等于其他兩邊之平方和,減去這兩邊中的一邊和另一邊在這邊上的射影乘積的兩倍. (2)鈍角對(duì)邊的平方等于其他兩邊的平方和,加上這兩邊中的一邊與另一邊在這邊上的射影乘積的兩倍.2.射影定理(歐幾里得定理)3.中線定理(巴布斯定理)設(shè)△ABC的邊BC的中點(diǎn)為P,則有;中
2025-06-16 21:17
【總結(jié)】常見(jiàn)的輔助線的作法“三線合一”法:遇到等腰三角形,可作底邊上的高,利用“三線合一”的性質(zhì)解題:倍長(zhǎng)中線,使延長(zhǎng)線段與原中線長(zhǎng)相等,構(gòu)造全等三角形:(1)可以自角平分線上的某一點(diǎn)向角的兩邊作垂線,(2)可以在角平分線上的一點(diǎn)作該角平分線的垂線與角的兩邊相交,形成一對(duì)全等三角形。(3)可以在該角的兩邊上,距離角的頂點(diǎn)相等長(zhǎng)度的位置上截取二點(diǎn),然后從這兩點(diǎn)再向角平分線上的某點(diǎn)作邊線,構(gòu)造一
2025-03-24 02:14
【總結(jié)】....由角平分線想到的輔助線角平分線具有兩條性質(zhì):a、對(duì)稱性;b、角平分線上的點(diǎn)到角兩邊的距離相等。對(duì)于有角平分線的輔助線的作法,一般有兩種。①?gòu)慕瞧椒志€上一點(diǎn)向兩邊作垂線;②利用角平分線,構(gòu)造對(duì)稱圖形(如作法是在一側(cè)的長(zhǎng)邊上截取短邊)。通常情況下,出現(xiàn)了直角或是垂直等條件時(shí),
2025-03-25 03:58
【總結(jié)】平面圖形的分類及概念類別概念圖示線直線:沒(méi)有端點(diǎn)、它是無(wú)限長(zhǎng)的。線段:有兩個(gè)端點(diǎn)、它的長(zhǎng)度是有限的。射線:有一個(gè)端點(diǎn),它的長(zhǎng)度是無(wú)限的?;【€:圓上A、B兩點(diǎn)間的部分叫做弧。角(由一點(diǎn)引出的兩條射線所圍成的圖形)銳角:大于0°,小于90°的角。鈍角:大于90°,小于180°的
2025-03-24 03:16
【總結(jié)】全等三角形作輔助線經(jīng)典例題常見(jiàn)輔助線的作法有以下幾種:1)遇到等腰三角形,可作底邊上的高,利用“三線合一”的性質(zhì)解題,思維模式是全等變換中的“對(duì)折”.2)遇到三角形的中線,倍長(zhǎng)中線,使延長(zhǎng)線段與原中線長(zhǎng)相等,構(gòu)造全等三角形,利用的思維模式是全等變換中的“旋轉(zhuǎn)”.3)遇到角平分線,可以自角平分線上的某一點(diǎn)向角的兩邊作垂線,利用的思維模式是三角形全等變換中的“對(duì)折”,所考知識(shí)點(diǎn)
2025-03-24 07:38
【總結(jié)】(1)只見(jiàn)顯性中點(diǎn)而看不到隱藏的中點(diǎn);(2)挖掘出隱藏的中點(diǎn)后,卻不會(huì)將各中點(diǎn)條件合理地進(jìn)行篩選與重組;(3)構(gòu)造出待證全等三角形后,常常是找邊容易找角難,對(duì)于角相等的證明方法過(guò)于單一且不夠靈活.1、如圖,在等腰直角三角形ABC中,∠ABC=90°,D為邊AC的中點(diǎn),過(guò)點(diǎn)D作DE⊥DF,交AB于點(diǎn)E,交B
2025-07-26 00:14
【總結(jié)】第一篇:高中平面幾何定理 (高中)平面幾何基礎(chǔ)知識(shí)(基本定理、基本性質(zhì)) 1.勾股定理(畢達(dá)哥拉斯定理)(廣義勾股定理)(1)銳角對(duì)邊的平方,等于其他兩邊之平方和,減去 這兩邊中的一邊和另一邊在...
2024-11-09 12:32
【總結(jié)】第一篇:初中數(shù)學(xué)幾何證明題作輔助線的技巧 人說(shuō)幾何很困難,難點(diǎn)就在輔助線。初中數(shù)學(xué)幾何證明題輔助線怎么畫(huà)? 輔助線,如何添?把握定理和概念。還要刻苦加鉆研,找出規(guī)律憑經(jīng)驗(yàn)。圖中有角平分線,可向兩邊...
2024-10-28 22:46
【總結(jié)】幾何證明-常用輔助線(一)中線倍長(zhǎng)法:例1、求證:三角形一邊上的中線小于其他兩邊和的一半。已知:如圖,△ABC中,AD是BC邊上的中線,求證:AD﹤(AB+AC)分析:要證明AD﹤(AB+AC),就是證明AB+AC2AD,也就是證明兩條線段之和大于第三條線段,而我們只能用“三角形兩邊之和大于第三邊”,但題中的三條線段
2025-06-25 21:39
【總結(jié)】1、平面圖形的分類及概念2、類別概念圖示線直線:沒(méi)有端點(diǎn)、它是無(wú)限長(zhǎng)的。線段:有兩個(gè)端點(diǎn)、它的長(zhǎng)度是有限的。射線:有一個(gè)端點(diǎn),它的長(zhǎng)度是無(wú)限的?;【€:圓上A、B兩點(diǎn)間的部分叫做弧。角(由一點(diǎn)引出的兩條射線所圍成的圖形)銳角:大于0°,小于90°的角。鈍角:大于90°,小于180
【總結(jié)】幾何要想取得好成績(jī),幾何公式一定要爛熟于胸。幾何公式是做好幾何題的根基,因此同學(xué)們一定要在幾何公式上多下功夫。本文總結(jié)了初中幾何公式140條。初中幾何公式:線1過(guò)兩點(diǎn)有且只有一條直線 2兩點(diǎn)之間線段最短 3同角或等角的補(bǔ)角相等 4同角或等角的余角相等 5過(guò)一點(diǎn)有且只有一條直線和已知直線垂直 6直線外一點(diǎn)與直線上各
2025-07-22 09:50
【總結(jié)】......高一數(shù)學(xué)競(jìng)賽班二試講義第1講平面幾何中的26個(gè)定理班級(jí)姓名一、知識(shí)點(diǎn)金1.梅涅勞斯定理:若直線不經(jīng)過(guò)的頂點(diǎn),并且與的三邊或它們的延長(zhǎng)線分別
2025-06-19 22:03