【總結(jié)】2020年4月10日第7周星期第節(jié)1教學(xué)內(nèi)容:本節(jié)課主要學(xué)習(xí)勾股逆定理以及應(yīng)用.課時(shí):2教學(xué)目標(biāo):探索幵掌握直角三角形判別思想,會(huì)應(yīng)用勾股逆定理解決實(shí)際問(wèn)題.經(jīng)歷直角三角形判
2024-11-21 01:10
【總結(jié)】勾股定理及其逆定理專題復(fù)習(xí),5,x為邊組成直角三角形,則x應(yīng)滿足()A. B. C. D.圖(3)A10064:3,其差為2㎝,則三角形的周長(zhǎng)是( )㎝ ㎝ ㎝ ㎝(3),正方形A的面積為()A.6B.36C.64D.84.若線段a,b,c組成Rt△,則它們的比為( )A、2∶
2025-04-16 23:53
【總結(jié)】第一篇:勾股定理逆定理教學(xué)設(shè)計(jì) 18.2勾股定理的逆定理 一、教學(xué)目標(biāo) 知識(shí)與技能:1.應(yīng)用勾股定理的逆定理判斷一個(gè)三角形是否是直角三角形。 2.靈活應(yīng)用勾股定理及逆定理解綜合題。 3.進(jìn)一...
2024-11-04 18:23
【總結(jié)】逆定理(一)勾股定理如果直角三角形兩直角邊分別為a,b,斜邊為c,那么a2+b2=c2學(xué)習(xí)目標(biāo)1、探究并證明勾股定的逆定理,并能運(yùn)用勾股定理的逆定理判斷一個(gè)三角形是否是直角三角形;2、了解原命題、逆命題、原定理、逆定理、勾股數(shù)的概念,并了解原命題是真命題,它的逆命題不一定是真命題。
2024-11-21 05:35
【總結(jié)】14.2勾股定理的應(yīng)用第14章勾股定理第2課時(shí)勾股定理及其逆定理的綜合運(yùn)用2.如圖,在4×5網(wǎng)格中,每個(gè)小正方形的頂點(diǎn)都叫做格點(diǎn),點(diǎn)A是其中的一個(gè)格點(diǎn),若B,C也是網(wǎng)格中的格點(diǎn),且△ABC是以BC為底邊,腰長(zhǎng)為的等腰直角三角形,那么符合條件的△ABC一共有()A.6個(gè)B.
2024-11-09 13:34
【總結(jié)】18.2勾股定理的逆定理(2)導(dǎo)學(xué)案【學(xué)習(xí)目標(biāo)】:1.利用勾股定理的逆定理解決方位角等實(shí)際應(yīng)用題。2.進(jìn)一步加深性質(zhì)定理與判定定理之間關(guān)系的認(rèn)識(shí)重難點(diǎn):靈活應(yīng)用勾股定理及逆定理解決實(shí)際問(wèn)題。學(xué)法指導(dǎo):5分鐘閱讀75頁(yè)例2,在針對(duì)預(yù)習(xí)案二次閱讀75頁(yè)例題2,解答預(yù)習(xí)案中的問(wèn)題,疑惑時(shí)記錄在我的疑惑欄內(nèi),準(zhǔn)備
【總結(jié)】X古埃及人曾用下面的方法得到直角按照這種做法真能得到一個(gè)直角三角形嗎??古埃及人曾用下面的方法得到直角:用13個(gè)等距的結(jié),把一根繩子分成等長(zhǎng)的12段,然后以3個(gè)結(jié),4個(gè)結(jié),5個(gè)結(jié)的長(zhǎng)度為邊長(zhǎng),用木樁釘成一個(gè)三角形,其中一個(gè)角便是直角。下面的三組數(shù)分別是一個(gè)三角形的三邊長(zhǎng)a,b,c:
2024-11-21 02:56
【總結(jié)】理4ACB操作?每個(gè)同學(xué)的桌上有一段12cm長(zhǎng)的線,請(qǐng)同學(xué)量出4cm,用大頭釘固定好把生下的線分成5cm和3cm兩段拉緊固定,用量角器量出最大角的度數(shù)。勾股定理的逆命題?如果三角形的一條邊的平方等于其它兩條邊的平方和,那么這個(gè)三角形是直角三角形。?已知:?求證:?證明:
2024-11-20 23:49
【總結(jié)】勾股定理及其逆定理的應(yīng)用常見(jiàn)題型利用勾股定理求線段長(zhǎng)1.如圖,在等腰直角三角形ABC中,∠ABC=90°,D為AC邊的中點(diǎn),過(guò)D點(diǎn)作DE⊥DF,交AB于E,交BC于F,若AE=4,F(xiàn)C=3,求EF的長(zhǎng).(注:直角三角形斜邊上的中線等于斜邊的一半)利用勾股定理求面積2.如圖,長(zhǎng)方形紙片ABCD沿對(duì)角線AC折疊,設(shè)點(diǎn)D落在D′處,BC交AD′于點(diǎn)
2025-03-24 12:59
【總結(jié)】4勾股定理及其逆定理復(fù)習(xí)典型例題1.勾股定理:直角三角形兩直角邊a、b的平方和等于斜邊c的平方。(即:a2+b2=c2)勾股定理的逆定理:如果三角形的三邊長(zhǎng):a、b、c有關(guān)系a2+b2=c2,那么這個(gè)三角形是直角三角形。2.勾股定理與勾股定理逆定理的區(qū)別與聯(lián)系區(qū)別:勾股定理是直角三角形的性質(zhì)定理,而其逆定理是判定定理聯(lián)系:勾股定理與其逆定理的題設(shè)和結(jié)論正好相反
【總結(jié)】第一篇:《勾股定理逆定理》觀評(píng)課報(bào)告 《勾股定理逆定理》觀評(píng)課報(bào)告 《數(shù)學(xué)課程標(biāo)準(zhǔn)》明確指出:“有效的數(shù)學(xué)活動(dòng)不能單純地依賴于模仿與記憶,學(xué)生學(xué)習(xí)數(shù)學(xué)的重要方式是動(dòng)手實(shí)踐、自主探索與合作交流,以促...
2024-11-04 14:21
【總結(jié)】第1頁(yè)共2頁(yè)初中數(shù)學(xué)勾股定理及其逆定理基礎(chǔ)題一、單選題(共9道,每道11分)5和7,則斜邊長(zhǎng)的平方為()D.12B所代表正方形的面積是(),不能作為直角三角形三邊長(zhǎng)度的是()=7,b=24,c=25
2025-08-11 21:25
【總結(jié)】勾股定理的逆定理學(xué)習(xí)目標(biāo):;2.理解互逆命題、互逆定理、勾股數(shù)的概念及互逆命題之間的關(guān)系;3.掌握勾股定理的逆定理,并能利用勾股定理的逆定理判定一個(gè)三角形是直角三角形;4.會(huì)運(yùn)用勾股定理的逆定理解決相關(guān)實(shí)際問(wèn)題.重點(diǎn):勾股定理的逆定理及其應(yīng)用難點(diǎn):勾股定理的逆定理的證明學(xué)法指導(dǎo):10分鐘精讀一遍73—74頁(yè),
2024-11-20 23:46
【總結(jié)】勾股定理的逆定理1.理解并掌握勾股定理的逆定理;2.利用勾股定理的逆定理判定一個(gè)三角形是否直角三角形.一、學(xué)習(xí)目標(biāo)本節(jié)的重點(diǎn)是:勾股定理的逆定理.本節(jié)的難點(diǎn)是:用勾股定理的逆定理判斷一個(gè)三角形是否直角
2025-08-04 14:08
【總結(jié)】勾股定理的逆定理你知道嗎?據(jù)說(shuō)古埃及人用下圖所示的方法畫(huà)直角:把一根長(zhǎng)繩打上等距離的13個(gè)結(jié),然后以3個(gè)結(jié)、4個(gè)結(jié)、5個(gè)結(jié)的長(zhǎng)度為邊長(zhǎng),用木樁釘成一個(gè)三角形,其中一個(gè)角便是直角.(1)(2)(3)(4)(5)(6)(7)(8)(9)(10)(11)(12)(13)你知道
2025-08-16 01:15