【總結(jié)】用待定系數(shù)法確定二次函數(shù)表達(dá)式九年級(jí)(下冊(cè))初中數(shù)學(xué)2.還記得我們是怎樣求一次函數(shù)和反比例函數(shù)的表達(dá)式嗎?1.二次函數(shù)關(guān)系式有哪幾種表達(dá)方式?用待定系數(shù)法求解.一般式:y=ax2+bx+c(a≠0)頂點(diǎn)式:y=a(x+h)2+k(a≠0)知識(shí)回顧用待定系數(shù)法確
2024-11-25 22:01
【總結(jié)】第5章二次函數(shù)用待定系數(shù)法確定二次函數(shù)表達(dá)式用待定系數(shù)法確定二次函數(shù)表達(dá)式目標(biāo)突破總結(jié)反思第5章二次函數(shù)知識(shí)目標(biāo)知識(shí)目標(biāo)1.通過(guò)類比用待定系數(shù)法求一次函數(shù)表達(dá)式的過(guò)程,會(huì)利用待定系數(shù)法求二次函數(shù)的表達(dá)式.2.能根據(jù)已知點(diǎn)的特點(diǎn),熟練選用適當(dāng)?shù)姆椒ㄇ蠖魏瘮?shù)的表達(dá)式.用待定
2025-06-17 23:45
【總結(jié)】滬科版·八年級(jí)上冊(cè)第3課時(shí)用待定系數(shù)法求一次函數(shù)的解析式狀元成才路新課導(dǎo)入已知兩個(gè)函數(shù)的圖象如圖所示,請(qǐng)根據(jù)圖象寫(xiě)出每條直線的表達(dá)式.從圖象知,圖1中直線的函數(shù)是正比例函數(shù),其解析式為y=kx形式,關(guān)鍵是如何求出k的值;由圖可知圖象過(guò)點(diǎn)(1,2),所以該點(diǎn)坐標(biāo)必適
2025-03-12 15:36
【總結(jié)】(1,)、B、O(0,0),試說(shuō)明A、O、B三點(diǎn)在同一條直線上。,求該函數(shù)的表達(dá)式,并補(bǔ)全表格。x-2125y6-3-12-15,某電力公司特制定了新的用電收費(fèi)標(biāo)準(zhǔn),每月用電量x(度)與應(yīng)付電費(fèi)y(元)的關(guān)系如圖所示.分別求出當(dāng)0≤x≤50和x>50時(shí),y與
2025-03-24 12:45
【總結(jié)】二次函數(shù)解析式的求法(二)二次函數(shù)解析式常見(jiàn)的三種表示形式:(1)一般式(2)頂點(diǎn)式(3)交點(diǎn)式回味知識(shí)點(diǎn):1、已知:拋物線y=ax2+bx+c過(guò)直線與x軸、y軸的交點(diǎn),且過(guò)(1,1),求拋物線的解析式;講例:分析:∵直線
2024-11-09 13:01
【總結(jié)】用待定系數(shù)法確定一次函數(shù)表達(dá)式學(xué)習(xí)目標(biāo):1、使學(xué)生通過(guò)實(shí)際問(wèn)題,感受待定系數(shù)法的意義;2、并學(xué)會(huì)使用待定系數(shù)法求簡(jiǎn)單的函數(shù)關(guān)系式。學(xué)習(xí)重點(diǎn):使學(xué)生能應(yīng)用待定系數(shù)法求一次函數(shù)的解析式。學(xué)習(xí)難點(diǎn):靈活運(yùn)用有關(guān)知識(shí)解決相關(guān)問(wèn)題。學(xué)習(xí)流程:一、知識(shí)鏈接=2x和y=-x+3的圖象2.你在作這兩個(gè)函數(shù)圖象時(shí),分別描了幾個(gè)點(diǎn)?二、自主探究
2025-06-30 23:47
【總結(jié)】數(shù)學(xué)教學(xué)設(shè)計(jì)教材:義務(wù)教育教科書(shū)·數(shù)學(xué)(九年級(jí)下冊(cè))作者:吳昊(連云港市外國(guó)語(yǔ)學(xué)校)用待定系數(shù)法確定二次函數(shù)表達(dá)式教學(xué)目標(biāo)1.通過(guò)對(duì)用待定系數(shù)法求二次函數(shù)表達(dá)式的探究,掌握求二次函數(shù)表達(dá)式的方法;2.能靈活的根據(jù)條件恰當(dāng)?shù)剡x擇表達(dá)式,體會(huì)二次函數(shù)表達(dá)式之間的轉(zhuǎn)化;3.從學(xué)習(xí)過(guò)程
2024-12-09 13:13
【總結(jié)】1.知識(shí)梳理(一).二次函數(shù)用配方法可化成:的形式,其中例題1:拋物線的頂點(diǎn)坐標(biāo)為(1,3),則b=,c=.,再向右平移1個(gè)單位,得到,則a=,b=,c=.(二).二次函數(shù)的對(duì)稱軸、頂點(diǎn)、最值,與坐標(biāo)軸交點(diǎn)(技法:如果解析式為頂點(diǎn)式,則對(duì)稱軸x=h,頂點(diǎn)(h,k),最值:當(dāng)x=h函數(shù)有最
2025-06-23 13:57
【總結(jié)】......一元二次方程的根與系數(shù)的關(guān)系也稱為韋達(dá)定理,其逆定理也成立,它是由16世紀(jì)的法國(guó)數(shù)學(xué)家韋達(dá)發(fā)現(xiàn)的.它揭示了實(shí)系數(shù)一元二次方程的根與系數(shù)的關(guān)系,它形式簡(jiǎn)單但內(nèi)涵豐富,在數(shù)學(xué)解題中有著廣泛的應(yīng)用.?【知
2025-05-16 01:10
【總結(jié)】求二次函數(shù)解析式練習(xí)題1.已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示對(duì)稱軸為x=﹣.下列結(jié)論中,正確的是( ?。〢.a(chǎn)bc>0B a+b=0 C.2b+c>0 D.4a+c<2b【答案】D=ax2+bx+c(a≠0)的圖象如圖所示,給出下列結(jié)論:①b2-4ac0;②2a+b0;③4a-2b+c=0;④a︰b︰c=-1︰2︰(
2025-03-24 06:27
【總結(jié)】二次函數(shù)的解析式求法?求二次函數(shù)的解析式這類題涉及面廣,靈活性大,技巧性強(qiáng),筆者結(jié)合近幾年來(lái)的中考試題,總結(jié)出幾種解析式的求法,供同學(xué)們學(xué)習(xí)時(shí)參考。一、三點(diǎn)型例1已知一個(gè)二次函數(shù)圖象經(jīng)過(guò)(-1,10)、(2,7)和(1,4)三點(diǎn),那么這個(gè)函數(shù)的解析式是_______。分析已知二次函數(shù)圖象上的三個(gè)點(diǎn),可設(shè)其解析式為y=ax+bx+c
2025-06-16 00:12
【總結(jié)】二次函數(shù)圖象與性質(zhì)知識(shí)點(diǎn)一、二次函數(shù)的定義: 形如y=ax2+bx+c(a≠0,a,b,c為常數(shù))的函數(shù)稱為二次函數(shù)(quadraticfuncion).其中a為二次項(xiàng)系數(shù),b為一次項(xiàng)系數(shù),c為常數(shù)項(xiàng).知識(shí)點(diǎn)二、二次函數(shù)的圖象及畫(huà)法 二次函數(shù)y=ax2+bx+c(a≠0)的圖象是對(duì)稱軸平行于y軸(或是y軸本身),那么其圖象的開(kāi)口方向、形狀完全相
【總結(jié)】二次函數(shù)專題復(fù)習(xí)考點(diǎn)一 二次函數(shù)的概念一般地,如果y=ax2+bx+c(a,b,c是常數(shù),a≠0),那么y叫做x的二次函數(shù).注意:(1)二次項(xiàng)系數(shù)a≠0;(2)ax2+bx+c必須是整式;(3)一次項(xiàng)可以為零,常數(shù)項(xiàng)也可以為零,一次項(xiàng)和常數(shù)項(xiàng)可以同時(shí)為零;(4)自變量x的取值范圍是全體實(shí)數(shù).考點(diǎn)二 二次函數(shù)的圖象及性質(zhì)二次函數(shù)y=ax2+bx+c(a,b,c為常數(shù),a
2025-04-16 13:00
【總結(jié)】二次函數(shù)提高訓(xùn)練(12)一、二次函數(shù)的定義例1、已知函數(shù)y=(m-1)xm2+1+5x-3是二次函數(shù),求m的值。若函數(shù)y=(m2+2m-7)x2+4x+5是關(guān)于x的二次函數(shù),則m的取值范圍為。二、圖像的應(yīng)用例2.已知拋物線,(1)用配方法求它的頂點(diǎn)坐標(biāo)和對(duì)稱軸(2)若該拋物線與x軸的兩個(gè)交點(diǎn)為A、B,求線段AB的長(zhǎng).1、拋物線的頂點(diǎn)坐標(biāo)為(
2025-03-24 06:25
【總結(jié)】2021/11/11二次函數(shù)解析式的8種求法2021/11/11一、定義型:??此類題目是根據(jù)二次函數(shù)的定義來(lái)解題,必須滿足二個(gè)條件:?1、a≠0;?2、x的最高次數(shù)為2次.?例1、若y=(m^2+m)Xm^2–2m-1是二次函數(shù),則m=.
2025-10-10 09:32