【總結(jié)】等腰三角形(復習教案)教學目標·知識與技能目標建立知識框架結(jié)構(gòu)圖,了解掌握等腰三角形知識。復習等腰三角形有關(guān)定理的探索與證明,證明的思路和方法。能利用等腰三角形的有關(guān)定理,證明線段相等、角相等及直線垂直等?!み^程方法通過回顧有關(guān)定理的證明,進一步掌握綜合法的證明法。提高學生用規(guī)定數(shù)學語言表達
2025-01-09 09:11
【總結(jié)】快樂學習,盡在中小學教育網(wǎng)破解等腰三角形“三招”陶乃文1.分清“腰、底”例1.已知一個等腰三角形的一邊長為5,另一邊長為7,則這個等腰三角形的周長是()A.12B.17C.19D.17或19分析:題中并未說明5是底邊,還是腰,應(yīng)分兩種情況討論。解
2025-08-27 16:20
【總結(jié)】等腰三角形兩腰相等;等腰三角形兩底角相等;等腰三角形“三線合一”;……問題1:小區(qū)內(nèi)有一個三角形小花壇,現(xiàn)在想把它分割成兩個三角形,使之可以種上不同的花。你會怎么分?ABCP問題2:如果要分割成兩個等腰三角形呢?原三角形的角度不知道。無法分!從頂點引一條線段問題3:如果花壇
2024-11-24 15:15
【總結(jié)】等腰三角形性質(zhì)的應(yīng)用——復習課如圖,在△ABC中,AB=AC,點D在AC上,且BD=BC=AD,求△ABC各角的度數(shù)。ABCD121.等邊對等角的應(yīng)用ABCD12解:∵AB=AC,∴∠ABC=∠C又∵BD=BC=AD,∴∠C=∠
【總結(jié)】等腰三角形的性質(zhì)如圖,把一張長方形紙片按圖中的虛線對折,并剪去陰影部分,再把它展開,得△ABCACDBAC和AB有什么關(guān)系?這個三角形有什么特點?探索:探究ACBBBBBBBB(B)ACB
2024-11-24 15:53
【總結(jié)】,如果________相等,那么這兩條直線平行;,________相等;3.____________對應(yīng)相等的兩個三角形全等;(SAS)4.____________對應(yīng)相等的兩個三角形全等;(ASA)5._____對應(yīng)相等的兩個三角形全等;(SSS)你能證明下面的推論嗎?推論兩角及其中一角的對邊對
2024-11-24 13:18
【總結(jié)】第一篇:等腰三角形(一)教學設(shè)計 等腰三角形 (一)教學目標 1.等腰三角形的概念.2.等腰三角形的性質(zhì).3.等腰三角形的概念及性質(zhì)的應(yīng)用. 教學重點:1.等腰三角形的概念及性質(zhì).2.等腰三角...
2024-11-12 12:14
【總結(jié)】第一章三角形的證明等腰三角形第1課時全等三角形與等腰三角形的性質(zhì)1課堂講解?全等三角形?等腰三角形的邊、角性質(zhì)?等腰三角形的“三線合一”性質(zhì)2課時流程逐點導講練課堂小結(jié)作業(yè)提升活動:實踐觀察,認識三角形DACB得到這個△A
2024-12-30 00:30
【總結(jié)】等腰三角形的性質(zhì)定理1、從邊看:等腰三角形的兩腰相等。(定義)2、從角看:等腰三角形的兩底角相等。(性質(zhì)定理1)3、從重要線段看:等腰三角形的頂角平分線、底邊上的中線和高線互相重合。(性質(zhì)定理2)定義:有兩邊相等的三角形是等腰三角形。如何判定一個三角形是等腰三角形?還有其他方法嗎?等腰三角形的兩底角相等,
【總結(jié)】等腰三角形林奕娜一、教材分析《等腰三角形》是人教版義務(wù)教育教科書《數(shù)學》八年級上冊第十三章《軸對稱》第三小節(jié)第一課時的內(nèi)容。等腰三角形是一種特殊的三角形,它除了具有一般三角形的所有性質(zhì)外,還有許多特殊的性質(zhì),因此它比一般三角形應(yīng)用更廣泛。而等腰三角形的特殊性質(zhì)又與它是軸對稱圖形有關(guān)。另外,等腰三角形的性質(zhì)又是研究等邊三角形、證明角相等、線段相等及直線垂直的重要依據(jù)
2025-04-17 08:21
【總結(jié)】 《等腰三角形》教學設(shè)計 教材分析: 《等腰三角形》是冀教版八年級數(shù)學上冊第十七章第一節(jié)內(nèi)容。是在學習了軸對稱之后編排的,是軸對稱知識的延伸和應(yīng)用。等腰三角形的性質(zhì)及判定是探究線段相等、角相等、...
2024-11-11 12:07
【總結(jié)】宇軒圖書下一頁上一頁末頁目錄首頁第20講等腰三角形考點知識精講宇軒圖書下一頁上一頁末頁目錄首頁考點訓練中考典例精析舉一反三考點知識精講
2025-01-15 06:47
【總結(jié)】八年級上冊等腰三角形(第2課時)問題等腰三角形性質(zhì)定理的內(nèi)容是什么?這個命題的題設(shè)和結(jié)論分別是什么?性質(zhì)定理的條件是:一個三角形中有兩條邊相等.結(jié)論:這兩條邊所對的角相等.探索等腰三角形的判定定理作頂角的平分線或底邊上的高或底邊的中線,將一個三角形的問題轉(zhuǎn)化為兩個全等三
2024-11-24 17:30
【總結(jié)】同學們好!【看看誰的手巧】請把一根塑料管剪成三段,把它們首尾相連成一個等腰三角形剩下的兩邊長為8cm和6cm等腰三角形圓規(guī)刻度尺量角器123能否用你得到的工具來判斷△ABC是不是等腰三角形?★等邊對等角★等角對等邊因為AB=AC所以∠B=∠C所
2024-11-03 15:44
【總結(jié)】(n-2)×180°三角形與三角形有關(guān)的線段a-b<c<a+b(a-b>0)高三角形的邊三角形的三邊關(guān)系中線角平分線的定義位置、交點三角形的內(nèi)角和多邊形的內(nèi)角和多邊形的外角和三角形的外角和多邊形外角和為360°鑲嵌的原理
2024-12-07 16:28