【總結(jié)】函數(shù)與不等式綜合測(cè)試題班級(jí)姓名得分一、選擇題(每小題5分,滿(mǎn)分60分),,則()A.B.C.D.:的否定是真命題,則()A.B.C.D.,則命題:“”是命題:“”成立的()
2025-03-24 12:15
【總結(jié)】精品資源不等式與不等式組單元測(cè)試班級(jí)姓名座號(hào)成績(jī)一、選擇題(每小題5分,共30分)1、若mn,則下列不等式中成立的是()A、m+ana2D、a-ma-n2、不等式的負(fù)整數(shù)解的個(gè)數(shù)為()A、0個(gè)
2025-03-24 05:47
【總結(jié)】第一篇:不等式證明練習(xí)題 不等式證明練習(xí)題 (1/a+2/b+4/c)*1 =(1/a+2/b+4/c)*(a+b+c) 展開(kāi),得 =1+2a/b+4a/c+b/a+2+4b/c+c/a+2...
2025-10-18 11:21
【總結(jié)】第一篇:均值不等式練習(xí)題 均值不等式求最值及不等式證明2013/11/2 3題型 一、均值不等式求最值 例題: 1、湊系數(shù):當(dāng)0x4時(shí),求y=x(8-2x)的最大值。 2、湊項(xiàng):已知x...
2024-11-05 18:14
【總結(jié)】精品資源不等式與不等式組(時(shí)間:45分鐘滿(mǎn)分:100分)姓名歡迎下載一、選擇題(每小題5分,共30分)1.若m>n,則下列不等式中成立的是()A.m+a<n+bB.ma<nbC.ma2>na2D.a(chǎn)m<an2.不等式4(x2)>2(3x+5)的非負(fù)整數(shù)解的個(gè)
2025-06-29 17:09
【總結(jié)】1.不等式的定義:若baba????0baba????0baba????0;;.2.不等式的性質(zhì):推論:若a>b,且c>d,則a+cb+d(同向,可加性)(1)(對(duì)稱(chēng)性)abba???(2)
2025-01-20 01:36
2025-07-24 19:51
【總結(jié)】20170927112學(xué)校:_考號(hào):_________一、選擇題(本大題共8小題,),y滿(mǎn)足約束條件,則目標(biāo)函數(shù)z=x+3y的最大值為( ?。〢.?????B.??????????D.
2025-03-25 02:05
【總結(jié)】2022年中考試題專(zhuān)題之7-不等式與不等式組試題及答案一、填空題1.(2022年北京市)不等式325x??的解集是.2.(2022年瀘州)關(guān)于x的方程xkx21??的解為正實(shí)數(shù),則k的取值范圍是3.(2022年吉林省)不等式23xx??的解集為.4、(2022
2025-01-11 03:08
【總結(jié)】第一篇:不等式證明練習(xí)題 11n+3恒成立,則n的最大值是()a-bb-ca-c A.2B.3C.4D.61.設(shè)abc,n?N,且 x2-2x+22.若x?(-¥,1),則函數(shù)y=有()2x...
2025-10-20 06:56
【總結(jié)】《不等式》復(fù)習(xí)題一、填空題1、不等式組的解集是2、將下列數(shù)軸上的x的范圍用不等式表示出來(lái) 3、的非正整數(shù)解為4、ab,則-2a-2b.5、3X≤12的自然數(shù)解有個(gè).6、不等
2025-06-24 19:20
【總結(jié)】第一篇:不等式練習(xí)題(文科) 不等式練習(xí)題 1、設(shè)a,b,c?R,且ab,則() A.a(chǎn)cbc B. 1123ab C.a(chǎn)b 2D.a(chǎn)b32、設(shè)a,b,c?R,且ab,則()...
2024-11-14 06:40
【總結(jié)】不等式與不等式組教材分析本章的主要內(nèi)容包括:一元一次不等式(組)及其相關(guān)概念,不等式的性質(zhì),一元一次不等式(組)的解法及其解集的幾何表示,利用一元一次不等式(組)分析與解決實(shí)際問(wèn)題.其中,以不等式(組)為工具分析問(wèn)題、解決問(wèn)題是重點(diǎn),也是教學(xué)中的主要難點(diǎn);一元一次不等式(組)及其相關(guān)概念、不等式的性質(zhì)是基礎(chǔ)知識(shí);掌握一元一次不等式(組)的解法及解集
2025-07-18 00:29
【總結(jié)】均值不等式均值不等式又名基本不等式、均值定理、重要不等式。是求范圍問(wèn)題最有利的工具之一,在形式上均值不等式比較簡(jiǎn)單,但是其變化多樣、使用靈活。尤其要注意它的使用條件(正、定、等)。1.(1)若,則 (2)若,則 (當(dāng)且僅當(dāng)時(shí)取“=”)2.(1)若,則 (2)若,則 (當(dāng)且僅當(dāng)時(shí)取“=”)(3)若,則(當(dāng)且僅當(dāng)時(shí)取“=”)3.均值不等式鏈:若都是正數(shù),則,當(dāng)且僅
2025-03-25 07:11
【總結(jié)】柯西不等式練習(xí)題1.(09紹興二模)設(shè)。(1)求的最大值;(2)求的取值范圍。2.(09寧波十校聯(lián)考)已知,且,求的最小值。3.(09溫州二模)已知,且。(1)若,求的值;(2)若恒成立,求正數(shù)的取值范圍。4、(09嘉興二模)設(shè),且。(1)求證:;(2)求的最小
2025-03-25 04:42