【總結(jié)】Mathwang幾個(gè)經(jīng)典不等式的關(guān)系一幾個(gè)經(jīng)典不等式(1)均值不等式設(shè)是實(shí)數(shù),等號(hào)成立.(2)柯西不等式設(shè)是實(shí)數(shù),則當(dāng)且僅當(dāng)或存在實(shí)數(shù),使得時(shí),等號(hào)成立.(3)排序不等式設(shè),為兩個(gè)數(shù)組,是的任一排列,則當(dāng)且僅當(dāng)或時(shí),等號(hào)成立.(4)切比曉夫不等式對(duì)于兩個(gè)數(shù)組:,,有當(dāng)且僅當(dāng)或時(shí),等號(hào)成立.二相關(guān)證明(1)用排
2025-04-17 08:24
【總結(jié)】1.不等式的定義:若baba????0baba????0baba????0;;.2.不等式的性質(zhì):推論:若a>b,且c>d,則a+cb+d(同向,可加性)(1)(對(duì)稱性)abba???(2)
2025-01-20 01:36
2025-07-24 19:51
【總結(jié)】第八講不等式與不等式組一、知識(shí)網(wǎng)絡(luò)結(jié)構(gòu)圖二、考點(diǎn)精析考點(diǎn)一:不等式基本性質(zhì)運(yùn)用1.由x0D.a2,則a的取值范圍是( ?。〢.a(chǎn)0B.aC.a&l
2025-04-16 12:51
【總結(jié)】不等式與不等式組教材分析本章的主要內(nèi)容包括:一元一次不等式(組)及其相關(guān)概念,不等式的性質(zhì),一元一次不等式(組)的解法及其解集的幾何表示,利用一元一次不等式(組)分析與解決實(shí)際問題.其中,以不等式(組)為工具分析問題、解決問題是重點(diǎn),也是教學(xué)中的主要難點(diǎn);一元一次不等式(組)及其相關(guān)概念、不等式的性質(zhì)是基礎(chǔ)知識(shí);掌握一元一次不等式(組)的解法及解集
2025-07-18 00:29
【總結(jié)】第一篇:構(gòu)造函數(shù),妙解不等式 構(gòu) 不等式與函數(shù)是高中數(shù)學(xué)最重要的兩部分內(nèi)容。把作為高中數(shù)學(xué)重要工具的不等式與作為高中數(shù)學(xué)主線的函數(shù)聯(lián)合起來(lái),這樣資源的優(yōu)化配置將使學(xué)習(xí)內(nèi)容在函數(shù)思想的指導(dǎo)下得到重組...
2024-10-31 14:49
【總結(jié)】第一篇:構(gòu)造函數(shù)證明數(shù)列不等式 構(gòu)造函數(shù)證明數(shù)列不等式ln2ln3ln4ln3n5n+6+++L+n3n-(n?N*).:23436 :(1)a32,a+a+L+(n32)a2(n+1)23n...
2024-10-31 14:50
【總結(jié)】不等式與不等式典型例題例320xxm??????有解,則m的取值范圍是:。010axx???????無(wú)解,則a的取值范圍是:。例202350xabxab?????????的解集為-1x&
2025-07-23 23:04
【總結(jié)】不等式與不等式組專題復(fù)習(xí)(一)不等式考點(diǎn)1:不等式的定義知識(shí)點(diǎn)::用符號(hào)“<”“>”“≤”“≥”表示大小關(guān)系的式子叫做不等式。(像a+2≠a-2這樣用“≠”號(hào)表示不等關(guān)系的式子也是不等式。):①x是正數(shù),則x>0;②x是負(fù)數(shù),則x<0;③x是非負(fù)數(shù),則x≥0;④x是非正數(shù),則x≤0;⑤x大于y,則x-y>0;⑥x小于y,則x-y<0;
【總結(jié)】第二十講不等式與不等式組,并把解在數(shù)軸上表示出來(lái).61232???xx1325??x<⑴⑵3x+5>5(x-1)356634xx???①②3x-m≤0的正整數(shù)解是1,2,3,求m的取值范圍.x的不等式組x-a≥
2024-11-19 12:04
【總結(jié)】第一篇:構(gòu)造函數(shù)處理不等式問題 構(gòu)造函數(shù)處理不等式問題 函數(shù)與方程,不等式等聯(lián)系比較緊密,如果從方程,不等式等問題中所提供的信息得知其本質(zhì)與函數(shù)有關(guān),該題就可考慮運(yùn)用構(gòu)造函數(shù)的方法求解。構(gòu)造函數(shù),...
2024-10-31 14:46
【總結(jié)】第一篇:構(gòu)造法證明函數(shù)不等式 構(gòu)造法證明函數(shù)不等式 1、利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性極值和最值,再由單調(diào)性來(lái)證明不等式是函數(shù)、導(dǎo)數(shù)、不等式綜合中的一個(gè)難點(diǎn),也是近幾年高考的熱點(diǎn). 2、解題技巧是構(gòu)造...
2024-10-27 20:30
【總結(jié)】第一篇:函數(shù)法證明不等式[大全] 函數(shù)法證明不等式 已知函數(shù)f(x)=x-sinx,數(shù)列{an}滿足0 證明0 證明an+1 3它提示是構(gòu)造一個(gè)函數(shù)然后做差求導(dǎo),確定單調(diào)性。可是還是一點(diǎn)思路...
2024-10-30 22:00
【總結(jié)】第一篇:基本不等式與不等式基本證明 課時(shí)九基本不等式與不等式基本證明 第一部分:基本不等式變形技巧的應(yīng)用 基本不等式在求解最值、值域等方面有著重要的應(yīng)用,利用基本不等式時(shí),關(guān)鍵在對(duì)已知條件的靈活...
2024-10-29 03:11
【總結(jié)】第一篇:不等式證明,均值不等式 1、設(shè)a,b?R,求證:ab3(ab)+aba+b23abba2、已知a,b,c是不全相等的正數(shù),求證:a(b2+c2)+b(c2+a2)+c(a2+b2)>6abc...
2024-11-03 17:10