【總結(jié)】均值不等式應(yīng)用(技巧)一.均值不等式1.(1)若,則(2)若,則(當(dāng)且僅當(dāng)時(shí)取“=”)2.(1)若,則(2)若,則(當(dāng)且僅當(dāng)時(shí)取“=”)(3)若,則(當(dāng)且僅當(dāng)時(shí)取“=”),則(當(dāng)且僅當(dāng)時(shí)取“=”);若,則(當(dāng)且僅當(dāng)時(shí)取“=”)若,則(當(dāng)且僅當(dāng)時(shí)取“=”),則(當(dāng)且僅當(dāng)時(shí)取“=”)若,則(當(dāng)且僅當(dāng)時(shí)取“=”),則(當(dāng)且僅當(dāng)時(shí)取“=”
2025-07-23 23:59
【總結(jié)】課題:基本不等式科目:數(shù)學(xué)教學(xué)對(duì)象:高一學(xué)生課時(shí):1課時(shí)提供者:李文毅單位:大同四中一、教學(xué)內(nèi)容分析?本節(jié)課《基本不等式》是《數(shù)學(xué)必修五(人教A版)》第三章第四節(jié)的內(nèi)容,主要內(nèi)容是通過(guò)現(xiàn)實(shí)問(wèn)題進(jìn)行數(shù)學(xué)實(shí)驗(yàn)猜想,構(gòu)造數(shù)學(xué)模型,得到均值不等式;并通過(guò)在學(xué)習(xí)算術(shù)平均數(shù)與幾何平均數(shù)的定義基礎(chǔ)上,理解均值不等式的幾何解釋;,對(duì)于不等式的證明及利用均值不等式求
2025-04-17 00:20
【總結(jié)】一元一次不等式經(jīng)典分類練習(xí)題1、下列不等式中,是一元一次不等式的是()A;B;C;D;2、下列各式中,是一元一次不等式的是()+4>8 ?。? ≤5 D.-3x≥03、下列各式中,是一元一次不等式的是()(1)2x”或“
2025-03-24 05:30
【總結(jié)】高中數(shù)學(xué)不等式練習(xí)題 一.選擇題(共16小題)1.若a>b>0,且ab=1,則下列不等式成立的是( ?。〢.a(chǎn)+<<log2(a+b)) B.<log2(a+b)<a+C.a(chǎn)+<log2(a+b)< D.log2(a+b))<a+<2.設(shè)x、y、z為正數(shù),且2x=3y=5z,則( ?。〢.2x<3y<5z B.5z<2x<3y C.3y<5z<2x D.3y<2x
2025-04-04 05:05
【總結(jié)】眾所周知,不等式解法是不等式這一板塊的高考備考重點(diǎn),其中,含有參數(shù)的不等式的問(wèn)題,是主考命題的熱點(diǎn),又是復(fù)習(xí)提高的難點(diǎn)。?。?)解不等式,尋求新不等式的解集; ?。?)已知不等式的解集(或這一不等式的解集與相關(guān)不等式解集之間的聯(lián)系),尋求新含參數(shù)的值或取值范圍?! 。?)注意到上述題型(2)的難度與復(fù)雜性,本專題對(duì)這一類含參不等式問(wèn)題的解題策略作以探索與總結(jié)?! ∫弧⒘⒆阌凇爸泵?/span>
2025-03-24 23:42
【總結(jié)】基本不等式1.若,下列不等式恒成立的是 ( ?。〢. B. C. D.2.若且,則下列四個(gè)數(shù)中最大的是 ?。ǎ粒 。拢 。茫?ab ?。模產(chǎn)3.設(shè)x0,則的最大值為( ?。粒? ?。拢 。茫 ?/span>
2025-06-23 02:10
【總結(jié)】第一篇:57均值不等式與不等式的實(shí)際應(yīng)用 學(xué)案五十七:均值不等式與不等式的實(shí)際應(yīng)用 命題:閆桂女劉麗娟審核:【考綱要求】 1、了解均值不等式的證明過(guò)程 2、會(huì)用均值不等式解決簡(jiǎn)單的最大(?。┲?..
2025-10-25 14:01
【總結(jié)】......第三節(jié):基本不等式1、基本不等式:(1)如果a、b是正數(shù),那么(當(dāng)且僅當(dāng)a=b時(shí)取“=”)(2)對(duì)基本不等式的理解:a>0,b>0,a,b的算術(shù)平均數(shù)是a+b/2,幾何平均數(shù)是_________
2025-06-24 04:49
【總結(jié)】第一篇:均值不等式的證明 均值不等式的證明 設(shè)a1,a2,a3...an是n個(gè)正實(shí)數(shù),求證(a1+a2+a3+...+an)/n≥n次√(a1*a2*a3*...*an).要簡(jiǎn)單的詳細(xì)過(guò)程,謝謝!...
2025-10-27 22:00
【總結(jié)】第一篇:均值不等式及其應(yīng)用 教師寄語(yǔ):一切的方法都要落實(shí)到動(dòng)手實(shí)踐中 高三一輪復(fù)習(xí)數(shù)學(xué)學(xué)案 均值不等式及其應(yīng)用 一.考綱要求及重難點(diǎn) 要求:(?。?,難度為中低檔題,.考點(diǎn)梳理 a+:3;...
2025-10-18 10:26
【總結(jié)】第一篇:不等式組練習(xí)題1 (A)m≤2ìx+95x+1,的解集是x>2,則m的取值范圍是().?xm+1(B)m≥2 ab dc(C)m≤11bd4(D)m≥1則b+d的值為_(kāi)_____...
2025-10-20 15:02
【總結(jié)】第一篇:均值不等式的應(yīng)用 均值不等式的應(yīng)用 教學(xué)目標(biāo): 教學(xué)重點(diǎn):應(yīng)用教學(xué)難點(diǎn):應(yīng)用 教學(xué)方法:講練結(jié)合教 具:多媒體教學(xué)過(guò)程 一、復(fù)習(xí)引入: ,平均不等式:調(diào)和平均數(shù)≤幾何平均數(shù)≤...
2025-10-18 19:15
【總結(jié)】眾所周知,不等式解法是不等式這一板塊的高考備考重點(diǎn),其中,含有參數(shù)的不等式的問(wèn)題,是主考命題的熱點(diǎn),又是復(fù)習(xí)提高的難點(diǎn)?!。?)解不等式,尋求新不等式的解集; ?。?)已知不等式的解集(或這一不等式的解集與相關(guān)不等式解集之間的聯(lián)系),尋求新含參數(shù)的值或取值范圍?! 。?)注意到上述題型(2)的難度與復(fù)雜性,本專題對(duì)這一類含參不等式問(wèn)題的解題策略作以探索與總結(jié)?! ∫?、立足于“直面
【總結(jié)】第一篇:不等式的解集練習(xí)題(一) 不等式作業(yè)(2) 班級(jí)姓名 1.不等式x-31的正整數(shù)解是2.不等式-9-3x£.當(dāng)x2x-5的值不大于0;.如果不等式(a-3)xb的解集是x 5.不...
2025-10-15 11:00
【總結(jié)】第一篇:均值不等式教學(xué)設(shè)計(jì) 教學(xué)目標(biāo) (一)知識(shí)與技能:明確均值不等式及其使用條件,能用均值不等式解決簡(jiǎn)單的最值問(wèn)題.(二)過(guò)程與方法:通過(guò)對(duì)問(wèn)題主動(dòng)探究,實(shí)現(xiàn)定理的發(fā)現(xiàn),體驗(yàn)知識(shí)與規(guī)律的形成...
2025-10-18 19:23