【總結(jié)】浙江大學研究生學位課程《實用數(shù)值計算方法》1第六章常微分方程及方程組的解法常微分方程及其求解概述初值問題解法邊值問題解法浙江大學研究生學位課程《實用數(shù)值計算方法》2常微分方程及其求解概述初值問題解法
2025-08-01 13:19
【總結(jié)】微分方程邊值問題的數(shù)值方法本部分內(nèi)容只介紹二階常微分方程兩點邊值問題的的打靶法和差分法。二階常微分方程為 當關(guān)于為線性時,即,此時變成線性微分方程 對于方程或,其邊界條件有以下3類:第一類邊界條件為 當或者時稱為齊次的,否則稱為非齊次的。第二類邊界條件為 當或者時稱為齊次的,否則稱為非齊次的。第三類邊界條件為 其中,當或者稱為
2025-06-07 19:14
【總結(jié)】微分方程數(shù)值解課程設計姓名*****學號200******專業(yè)信息與計算科學課設題目:對初邊值問題2222xutu?????(0x1)0||10??
2025-01-12 04:03
2025-06-06 05:22
【總結(jié)】2021/6/17常微分方程§微分方程的降階和冪級數(shù)解法2021/6/17常微分方程一、可降階的一些方程類型n階微分方程的一般形式:0),,,,()('?nxxxtF?1不顯含未知函數(shù)x,或更一般不顯含未知函數(shù)及其直到k-1(k1)階導數(shù)的方程是)(0),,,,()()1()(??
2025-05-11 05:30
【總結(jié)】第一節(jié)微分方程的概念第二節(jié)常見的一階微分方程第三節(jié)高階微分方程第四節(jié)歐拉方程第五節(jié)微分方程的應用第六節(jié)差分方程簡介微分方程簡介?方程:線性方程、二次方程、高次方程、指數(shù)方程、對數(shù)方程、三角方程和方程組等。?用微積分描述運動,便得到微分方程。例如描述物質(zhì)在一定條件下的運動變化規(guī)律;
2025-01-19 12:01
【總結(jié)】目錄上頁下頁返回結(jié)束§一階隱式微分方程一階顯式微分方程),(yxfy??一階隱式微分方程0),,(??yyxF()能從上式中解出,y?就可以化成顯式方程。例1求解微分方程.0)()(2????xydxdyyxdxdy目錄上頁下頁返回
2024-10-19 17:11
【總結(jié)】目錄上頁下頁返回結(jié)束一、一階微分方程求解1.一階標準類型方程求解關(guān)鍵:辨別方程類型,掌握求解步驟2.一階非標準類型方程求解(1)變量代換法——代換自變量代換因變量代換某組合式(2)積分因子法——選積分因子,解全微分方程四個標準類型
【總結(jié)】第六章常微分方程—不定積分問題—微分方程問題推廣微分方程的基本概念一階微分方程二階微分方程用Matlab軟件解二階常系數(shù)非齊次微分方程微分方程的基本概念微分方程的基本概念引例幾何問題物理問題解:設所求曲線方程為y=y(x),則有如下關(guān)系式:
2025-04-29 01:07
【總結(jié)】4.給定一階微分方程,(1).求出它的通解;(2).求通過點的特解;(3).求出與直線相切的解;(4).求出滿足條件的解;(5).繪出(2),(3),(4)中的解得圖形。解:(1).通解顯然為;(2).把代入得,故通過點的特解為;(3).因為所求直線與直線相切,所以只有唯一解,即只有唯一實根,從而,故與直線相切的解是;(4).把代入即得
2025-06-24 15:00
【總結(jié)】第八章多元函數(shù)微分學一多元函數(shù)與極限二多元函數(shù)的偏導數(shù)三多元函數(shù)的全微分及其應用四多元復合函數(shù)的微分法五*多元函數(shù)的極值例1設矩形的邊長分別x和y,則矩形的面積S為xyS?.在此,當x和y每取定一組值
2025-01-19 15:10
【總結(jié)】1(三)偏微分方程的數(shù)值離散方法?有限差分法?有限體積法?(有限元,譜方法,譜元,無網(wǎng)格,有限解析,邊界元,特征線)2有限差分法?模型方程的差分逼近?差分格式的構(gòu)造?差分方程的修正方程?差分方法的理論基礎?守恒型差分格式?偏微分方程的全離散方法
2025-07-17 12:48
【總結(jié)】一.填空1.Euler法的一般遞推公式為,整體誤差為,局部截斷誤差為:.,改進Euler的一般遞推公式整體誤差為,局部截斷誤差為:。2.線性多步法絕對穩(wěn)定的充要條件是
2025-04-16 23:19
【總結(jié)】第一章一階微分方程的解法的小結(jié)⑴、可分離變量的方程:①、形如當時,得到,兩邊積分即可得到結(jié)果;當時,則也是方程的解。、解:當時,有,兩邊積分得到所以顯然是原方程的解;綜上所述,原方程的解為②、形如當時,可有,兩邊積分可得結(jié)果;當時,為原方程的解,當時,為原方程的解。、解:當時,有兩邊積分
2025-06-25 01:32
【總結(jié)】山西師范大學本科畢業(yè)論文(設計)常微分方程的初等解法與求解技巧姓名張娟院系數(shù)學與計算機科學學院專業(yè)信息與計算科學班級12510201學號1251020126指導教師王曉鋒答辯日期成績常微分方程的初等解法與求解技巧內(nèi)容摘