freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

20xx中考數(shù)學壓軸題及答案-wenkub

2023-01-29 16:32:36 本頁面
 

【正文】 Q可能是矩形嗎?可能是正方形嗎?若可能,直接寫出mn應滿足的條件;若不可能,請說明理由. 6. (2011浙江金華)如圖1,在平面直角坐標系中,己知ΔAOB是等邊三角形,點A的坐標是(0,4),點B在第一象限,點P是x軸上的一個動點,連結AP,.(1)求直線AB的解析式;(2)當點P運動到點(,0)時,求此時DP的長及點D的坐標;(3)是否存在點P,使ΔOPD的面積等于,若存在,請求出符合條件的點P的坐標;若不存在,請說明理由.7.(2011浙江義烏)如圖1,四邊形ABCD是正方形,G是CD邊上的一個動點(點G與C、D不重合),以CG為一邊在正方形ABCD外作正方形CEFG,連結BG,DE.我們探究下列圖中線段BG、線段DE的長度關系及所在直線的位置關系: (1)①猜想如圖1中線段BG、線段DE的長度關系及所在直線的位置關系;②將圖1中的正方形CEFG繞著點C按順時針(或逆時針)方向旋轉任意角度,得到如圖如圖3情形.請你通過觀察、測量等方法判斷①中得到的結論是否仍然成立,并選取圖2證明你的判斷.(2)將原題中正方形改為矩形(如圖4—6),且AB=a,BC=b,CE=ka, CG=kb (ab,k0),第(1)題①中得到的結論哪些成立,哪些不成立?若成立,以圖5為例簡要說明理由.(3)在第(2)題圖5中,連結、且a=3,b=2,k=,求的值.8. (2011浙江義烏)如圖1所示,直角梯形OABC的頂點A、C作直線.將直線平移,平移后的直線與軸交于點D,與軸交于點E.(1)將直線向右平移,設平移距離CD為(t0),直角梯形OABC被直線掃過的面積(圖中陰影部份)為,關于的函數(shù)圖象如圖2所示, OM為線段,MN為拋物線的一部分,NQ為射線,N點橫坐標為4.①求梯形上底AB的長及直角梯形OABC的面積;②當時,求S關于的函數(shù)解析式;(2)在第(1)題的條件下,當直線向左或向右平移時(包括與直線BC重合),在直線AB上是否存在點P,使為等腰直角三角形?若存在,請直接寫出所有滿足條件的點P的坐標。若不存在,請說明理由.9.(2011山東煙臺)如圖,菱形ABCD的邊長為2,BD=2,E、F分別是邊AD,CD上的兩個動點,且滿足AE+CF=2.(1)求證:△BDE≌△BCF; (2)判斷△BEF的形狀,并說明理由;(3)設△BEF的面積為S,求S的取值范圍.10.(2011山東煙臺)如圖,拋物線交軸于A、B兩點,交軸于C、D兩點.(1)求拋物線對應的函數(shù)表達式;(2)拋物線或在軸上方的部分是否存在點N,使以A,C,M,求出點N的坐標;若不存在,請說明理由;(3)若點P是拋物線上的一個動點(P不與點A、B重合),那么點P關于原點的對稱點Q是否在拋物線上,請說明理由.)2011年5月1日,目前世界上最長的跨海大橋——杭州灣跨海大橋通車了.通車后,蘇南A地到寧波港的路程比原來縮短了120千米.已知運輸車速度不變時,行駛時間將從原來的3時20分縮短到2時.(1)求A地經(jīng)杭州灣跨海大橋到寧波港的路程.(2)若貨物運輸費用包括運輸成本和時間成本,時間成本是每時28元,那么該車貨物從A地經(jīng)杭州灣跨海大橋到寧波港的運輸費用是多少元?(3)A地準備開辟寧波方向的外運路線,即貨物從A地經(jīng)杭州灣跨海大橋到寧波港,再從寧波港運到B地.若有一批貨物(不超過10車)從A地按外運路線運到B地的運費需8320元,其中從A地經(jīng)杭州灣跨海大橋到寧波港的每車運輸費用與(2)中相同,從寧波港到B地的海上運費對一批不超過10車的貨物計費方式是:一車800元,當貨物每增加1車時,每車的海上運費就減少20元,問這批貨物有幾車?①標準紙“2開”紙、“4開”紙、“8開”紙、“16開”紙……都是矩形.②本題中所求邊長或面積都用含的代數(shù)式表示.12.(2011淅江寧波)如圖1,把一張標準紙一次又一次對開,得到“2開”紙、“4開”紙、“8開”紙、“16開”紙….已知標準紙的短邊長為.(1)如圖2,把這張標準紙對開得到的“16開”張紙按如下步驟折疊:第一步 將矩形的短邊與長邊對齊折疊,點落在上的點處,鋪平后得折痕;第二步 將長邊與折痕對齊折疊,點正好與點重合,鋪平后得折痕.則的值是 ,的長分別是 , .(2)“2開”紙、“4開”紙、“8開”紙的長與寬之比是否都相等?若相等,直接寫出這個比值;若不相等,請分別計算它們的比值.(3)如圖3,由8個大小相等的小正方形構成“”型圖案,它的四個頂點分別在“16開”紙的邊上,求的長.(4)已知梯形中,且四個頂點都在“4開”紙的邊上,請直接寫出2個符合條件且大小不同的直角梯形的面積.13.(2011山東威海)如圖,在梯形ABCD中,AB∥CD,AB=7,CD=1,AD=BC=5.點M,N分別在邊AD,BC上運動,并保持MN∥AB,ME⊥AB,NF⊥AB,垂足分別為E,F(xiàn).(1)求梯形ABCD的面積; (2)求四邊形MEFN面積的最大值. (3)試判斷四邊形MEFN能否為正方形,若能,求出正方形MEFN的面積;若不能,請說明理由. 14.(2011山東威海)如圖,點A(m,m+1),B(m+3,m-1)都在反比例函數(shù)的圖象上. (1)求m,k的值; (2)如果M為x軸上一點,N為y軸上一點, 以點A,B,M,N為頂點的四邊形是平行四邊形, 試求直線MN的函數(shù)表達式. (3)選做題:在平面直角坐標系中,點P的坐標為(5,0),點Q的坐標為(0,3),把線段PQ向右平移4個單位,然后再向上平移2個單位,得到線段P1Q1,則點P1的坐標為 ,點Q1的坐標為 .15.(2011湖南益陽)我們把一個半圓與拋物線的一部分合成的封閉圖形稱為“蛋圓”,如果一條直線與“蛋圓”只有一個交點,那么這條直線叫做“蛋圓”的切線.如圖12,點A、B、C、D分別是“蛋圓”與坐標軸的交點,已知點D的坐標為(0,3),AB為半圓的直徑,半圓圓心M的坐標為(1,0),半圓半徑為2.(1) 請你求出“蛋圓”拋物線部分的解析式,并寫出自變量的取值范圍;(2)你能求出經(jīng)過點C的“蛋圓”切線的解析式嗎?試試看;(3)開動腦筋想一想,相信你能求出經(jīng)過點D的“蛋圓”切線的解析式.16.(2011年浙江省紹興市)將一矩形紙片放在平面直角坐標系中,.動點從點出發(fā)以每秒1個單位長的速度沿向終點運動,運動秒時,動點從點出發(fā)以相等的速度沿向終點運動.當其中一點到達終點時,另一點也停止運動.設點的運動時間為(秒).(1)用含的代數(shù)式表示;(2)當時,如圖1,將沿翻折,點恰好落在邊上的點處,求點的坐標;(4) 連結,將沿翻折,得到,如圖2.問:與能否平行?與能否垂直?若能,求出相應的值;若不能,說明理由.17.(2011年遼寧省十二市)如圖16,在平面直角坐標系中,直線與軸交于點,與軸交于點,拋物線經(jīng)過三點.(1)求過三點拋物線的解析式并求出頂點的坐標;(2)在拋物線上是否存在點,使為直角三角形,若存在,直接寫出點坐標;若不存在,請說明理由;(3)試探究在直線上是否存在一點,使得的周長最小,若存在,求出點的坐標;若不存在,請說明理由.18.(2011年沈陽市)如圖所示,在平面直角坐標系中,矩形的邊在軸的負半軸上,邊在軸的正半軸上,且,矩形繞點按順時針方向旋轉后得到矩形.點的對應點為點,點的對應點為點,點的對應點為點,拋物線過點.(1)判斷點是否在軸上,并說明理由;(2)求拋物線的函數(shù)表達式;(3)在軸的上方是否存在點,點,使以點為頂點的平行四邊形的面積是矩形面積的2倍,且點在拋物線上,若存在,請求出點,點的坐標;若不存在,請說明理由.19.(2011年四川省巴中市) 已知:如圖14,拋物線與軸交于點,點,與直線相交于點,點,直線與軸交于點.(1)寫出直線的解析式.(2)求的面積.(3)若點在線段上以每秒1個單位長度的速度從向運動(不與重合),同時,點在射線上以每秒2個單位長度的速度從向運動.設運動時間為秒,請寫出的面積與的函數(shù)關系式,并求出點運動多少時間時,的面積最大,最大面積是多少?
點擊復制文檔內(nèi)容
試題試卷相關推薦
文庫吧 www.dybbs8.com
備案圖片鄂ICP備17016276號-1