【總結(jié)】不等式與不等式組測(cè)試姓名__________學(xué)號(hào)____一、選擇題(每題4分,共32分)1.不等式axb?的解集是bxa?,那么a的取值范圍是???????()A.0a?B.0a?C.0a?D.0a?2.不等式2135xx???的正整數(shù)解的個(gè)數(shù)是??
2025-11-02 04:58
【總結(jié)】第一篇:2014年數(shù)學(xué)高考專題--用構(gòu)造局部不等式法證明不等式[模版] 2014年數(shù)學(xué)高考專題--用構(gòu)造局部不等式法證明不等式 有些不等式的證明,若從整體上考慮難以下手,可構(gòu)造若干個(gè)結(jié)構(gòu)完全相同的...
2025-10-17 22:06
【總結(jié)】不等式和不等式組錢(qián)旭東淮安市啟明外國(guó)語(yǔ)學(xué)校蘇科版義務(wù)教育課程標(biāo)準(zhǔn)實(shí)驗(yàn)教科書(shū)九年級(jí)復(fù)習(xí)課回顧·知識(shí)一元一次不等式(組)的應(yīng)用一元一次不等式(組)的解法一元一次不等式(組)解集的含義一元一次不等式(組)的概念不等式的性質(zhì)一元一次不等式和一元一次不等式組回顧·知識(shí):含
2025-10-03 13:38
【總結(jié)】第9課不等式與不等式組1.定義:(1)用連接起來(lái)的式子叫做不等式;(2)使不等式成立的未知數(shù)的值叫做;(3)一個(gè)含有未知數(shù)的不等式的解的全體,叫做;(4)求不等式的解集的過(guò)程或證明不等式無(wú)解的過(guò)程,叫做解不等式.
2025-08-05 00:56
【總結(jié)】柯西不等式?答案:及幾種變式.、b、c、d為實(shí)數(shù),求證證法:(比較法)=….=定理:若a、b、c、d為實(shí)數(shù),則.變式:或或.定理:設(shè),則(當(dāng)且僅當(dāng)時(shí)取等號(hào),假設(shè))變式:.定理:設(shè)是兩個(gè)向量,則.等號(hào)成立?(是零向量,或者共線)練習(xí):已知a、b、c、d為實(shí)數(shù),求證.
2025-04-04 05:05
【總結(jié)】第一篇:不等式證明,均值不等式 1、設(shè)a,b?R,求證:ab3(ab)+aba+b23abba2、已知a,b,c是不全相等的正數(shù),求證:a(b2+c2)+b(c2+a2)+c(a2+b2)>6abc...
2025-10-25 17:10
【總結(jié)】第一講不等式和絕對(duì)值不等式1、不等式1、不等式的基本性質(zhì):①、對(duì)稱性:傳遞性:_________②、,a+c>b+c③、a>b,,那么ac>bc;a>b,,那么ac<bc
2025-10-31 23:32
【總結(jié)】Author:抽沙船2011年高考數(shù)學(xué)試題分類匯編——不等式一、選擇題1.(重慶理7)已知a>0,b>0,a+b=2,則y=的最小值是 A. B.4 C. D.5【答案】C2.(浙江理5)設(shè)實(shí)數(shù)滿足不等式組若為整數(shù),則的最小值是 A.14 B.16 C.17 D.19【答案】
2025-01-09 16:01
【總結(jié)】第八講不等式與不等式組一、知識(shí)網(wǎng)絡(luò)結(jié)構(gòu)圖二、考點(diǎn)精析考點(diǎn)一:不等式基本性質(zhì)運(yùn)用1.由x0D.a2,則a的取值范圍是( ?。〢.a(chǎn)0B.aC.a&l
2025-04-16 12:51
【總結(jié)】解不等式方程的方法:(1)設(shè):弄清題意和題目中的數(shù)量關(guān)系,用字母(x、y)表示題目中的未知數(shù);(2)找:找到能夠表示應(yīng)用題全部含義的一個(gè)不等的關(guān)系;(3)列:根據(jù)這個(gè)不等的數(shù)量關(guān)系,列出所需的代數(shù)式,從而列出不等式(組);(4)解:解這個(gè)所列出的不等式(組),求出未知數(shù)的解集;(5)答:寫(xiě)出答案,出售時(shí)標(biāo)價(jià)為1200元,后來(lái)由于商品積壓,商店準(zhǔn)備打折出售但要保持利
2025-08-17 07:18
【總結(jié)】指數(shù)不等式、對(duì)數(shù)不等式的解法·例題?例5-3-7?解不等式:解?(1)原不等式可化為x2-2x-1<2(指數(shù)函數(shù)的單調(diào)性)x2-2x-3<0(x+1)(x-3)<0所以原不等式的解為-1<x<3。(2)原不等式可化為注?函數(shù)的單調(diào)性是解指數(shù)不等式、對(duì)數(shù)不等式的重要依據(jù)。例5-
2025-06-25 01:24
【總結(jié)】高考數(shù)學(xué)備考之放縮技巧證明數(shù)列型不等式,因其思維跨度大、構(gòu)造性強(qiáng),需要有較高的放縮技巧而充滿思考性和挑戰(zhàn)性,能全面而綜合地考查學(xué)生的潛能與后繼學(xué)習(xí)能力,因而成為高考?jí)狠S題及各級(jí)各類競(jìng)賽試題命題的極好素材。這類問(wèn)題的求解策略往往是:通過(guò)多角度觀察所給數(shù)列通項(xiàng)的結(jié)構(gòu),深入剖析其特征,抓住其規(guī)律進(jìn)行恰當(dāng)?shù)胤趴s;其放縮技巧主要有以下幾種:奇巧積累:(1)(2)(3)
2025-01-14 14:08
【總結(jié)】習(xí)題精選精講解簡(jiǎn)單的不等式1解不等式:(x2-x+1)(x+1)(x-4)(6-x)0解:對(duì)于任何實(shí)數(shù)x,x2-x+10恒成立,所以原不等式等價(jià)于:(x+1)(x-4)(6-x)0∴(x+1)(x-4)(x-6)0所以原不等式的解為:x-1
2025-01-10 08:38
【總結(jié)】·高中總復(fù)習(xí)(第1輪)·理科數(shù)學(xué)·全國(guó)版1第講3含絕對(duì)值的不等式和一元二次不等式第一章集合與簡(jiǎn)易邏輯·高中總復(fù)習(xí)(第1輪)·理科數(shù)學(xué)·全國(guó)版2考點(diǎn)搜索●含絕對(duì)值的不等式的解法●一元二次不等
2025-08-11 14:49
【總結(jié)】立足教育開(kāi)創(chuàng)未來(lái)·高中總復(fù)習(xí)(第一輪)·理科數(shù)學(xué)·全國(guó)版1第六章不等式第講立足教育開(kāi)創(chuàng)未來(lái)·高中總復(fù)習(xí)(第一輪)·理科數(shù)學(xué)·全國(guó)版2考點(diǎn)搜索●利用基本不等式證明不等式●運(yùn)用重要不等式求最值
2025-08-11 14:47