【總結(jié)】銳角三角形直角三角形鈍角三角形——有一個(gè)角是鈍角。三角形按角的分類——三個(gè)角都是銳角?!幸粋€(gè)角是直角。你能舉出生活中用到直角三角形的例子嗎?直角三角形用Rt△表示,如圖記作Rt△ABC,ACB直角邊斜邊直角邊∠C=Rt∠直角三角形
2025-08-01 14:23
【總結(jié)】全等三角形綜合復(fù)習(xí)切記:“有三個(gè)角對(duì)應(yīng)相等”和“有兩邊及其中一邊的對(duì)角對(duì)應(yīng)相等”的兩個(gè)三角形不一定全等。例1.如圖,四點(diǎn)共線,,,,。求證:。例2.如圖,在中,是∠ABC的平分線,,垂足為。求證:。例3.如圖,在中,,。為延長線上一點(diǎn),點(diǎn)在上,,連接和。求證:。例4.如圖,//,//,求證:。例5.如圖,分別是外角和的平分線,它們交于
2025-06-23 18:30
【總結(jié)】三角形三邊關(guān)系、三角形內(nèi)角與定理三角形三邊關(guān)系、三角形內(nèi)角和定理 定理:三角形兩邊的和大于第三邊?! ⊥普摚喝切蝺蛇叺牟钚∮诘谌??! ”磉_(dá)式:△ABC中,設(shè)a>b>c 則b-c<a<b+c a-c<b<a+c a-b<c<a+b給出三條線段的長度,判斷它們能否構(gòu)成三角形?! 》椒ǎㄔO(shè)a、b、c
2025-07-25 00:01
【總結(jié)】......1.任意角的三角函數(shù)的定義:設(shè)是任意一個(gè)角,P是的終邊上的任意一點(diǎn)(異于原點(diǎn)),它與原點(diǎn)的距離是,那么,三角函數(shù)值只與角的大小有關(guān),而與終邊上點(diǎn)P的位置無關(guān)。:(一全二正弦,三切四余弦)+
2025-06-22 22:17
【總結(jié)】........全國卷歷年高考三角函數(shù)及解三角形真題歸類分析三角函數(shù)一、三角恒等變換(3題)1.(2015年1卷2)=()(A)(B)(C)(D)【解析】原式===,故選D.考點(diǎn):本題主要考查
2025-06-26 05:07
【總結(jié)】......三角函數(shù)知識(shí)點(diǎn)2、角的頂點(diǎn)與原點(diǎn)重合,角的始邊與軸的非負(fù)半軸重合,終邊落在第幾象限,則稱為第幾象限角.第一象限角的集合為第二象限角的集合為第三象限角的集合為第四象限角的集合為終邊在軸上
2025-06-23 03:58
【總結(jié)】山亭育才中學(xué)翟夫連①∵AD是△ABC的中線∴BD=CDABDC②S△ABD=S△ADC(等底同高)③中線的取值范圍常用的輔助線(見中線加倍延長構(gòu)造全等三角形)AB-AC2AB+AC2AD1中線1中線④重心(三
2024-11-09 22:05
【總結(jié)】第一篇:解三角形公式[大全] 1、正弦定理:在DABC中,a、b、c分別為角A、B、C的對(duì)邊,R為DABC的外接圓的半徑,則有 2、正弦定理的變形公式:① ②sinA=sinB=sinC= ③...
2024-10-26 23:10
【總結(jié)】第7講解三角形第7講│云覽高考[云覽高考]考點(diǎn)統(tǒng)計(jì)題型(頻率)考例(難度)考點(diǎn)1正弦定理與余弦定理選擇(1)解答(1)2022湖北卷8(B),2011湖北卷16(B)考點(diǎn)2三角形的面積問題0考點(diǎn)3解三角形的實(shí)際應(yīng)
2025-08-05 17:39
【總結(jié)】約定用A,B,C分別表示△ABC的三個(gè)內(nèi)角,分別表示它們所對(duì)的各邊長1.正弦定理:=.(R為△ABC外接圓半徑).△ABC的面積為S△ABC=2.余弦定理:.:角平分線分對(duì)邊所得兩段線段的比等于角兩邊之比.:若ABC則.::題組11.(1),判斷的形狀.(2)證明:(3)證明(4)證明:
2025-04-16 12:12
【總結(jié)】課題:解斜三角形講解:陳功課型:復(fù)習(xí)課1、復(fù)習(xí)初中所學(xué)的有關(guān)三角形的知識(shí):①A+B+C=π②b+ca,a+cb,a+bc③|b–c|a,|a–c|b,|a–
2025-08-05 16:23
【總結(jié)】..三角函數(shù)及解三角形練習(xí)題 一.解答題(共16小題)1.在△ABC中,3sinA+4cosB=6,4sinB+3cosA=1,求C的大?。?.已知3sinθtanθ=8,且0<θ<π.(Ⅰ)求cosθ;(Ⅱ)求函數(shù)f(x)=6cosxcos(x﹣θ)在[0,]上的值域.3.已知是函數(shù)f(x)=2cos2x+asin2x+1的一個(gè)零點(diǎn).(Ⅰ)求實(shí)數(shù)a的值;
2025-08-05 03:08
【總結(jié)】三角函數(shù)及解三角形練習(xí)題 一.解答題(共16小題)1.在△ABC中,3sinA+4cosB=6,4sinB+3cosA=1,求C的大?。?.已知3sinθtanθ=8,且0<θ<π.(Ⅰ)求cosθ;(Ⅱ)求函數(shù)f(x)=6cosxcos(x﹣θ)在[0,]上的值域.3.已知是函數(shù)f(x)=2cos2x+asin2x+1的一個(gè)零點(diǎn).(Ⅰ)求實(shí)數(shù)a的值;(Ⅱ
2025-03-24 05:42
【總結(jié)】三角形全等的判定第1課時(shí)全等三角形與全等三角形的判定條件1.的兩個(gè)三角形叫做全等三角形,全等三角形的對(duì)應(yīng)邊____,對(duì)應(yīng)角____.2.兩個(gè)三角形只有一組或兩組對(duì)應(yīng)相等的元素,這兩個(gè)三角形全等;兩個(gè)三角形有三組對(duì)應(yīng)相等的元素,這兩個(gè)三角形
2024-11-09 04:27
【總結(jié)】解三角形數(shù)列解三角形一、課程內(nèi)容解讀?解三角形是高中數(shù)學(xué)中的傳統(tǒng)內(nèi)容,大綱教材比較關(guān)注三角形邊角關(guān)系的恒等變換,教學(xué)重點(diǎn)放在運(yùn)算上。把其列為第五章平面向量的第二節(jié),作為平面向量的一個(gè)應(yīng)用(共16頁)。而課標(biāo)教材它在模塊5中獨(dú)立成章,共28頁,其中應(yīng)用舉例和相應(yīng)素材14頁,可見加大了應(yīng)用的要求。新課標(biāo)明確指出:不必在恒等變
2024-11-11 08:47