【正文】
測(cè)邊有利于控制長度誤差。嚴(yán)格說來 ,以不 同驗(yàn)潮站所得的平均海面為基準(zhǔn)來求同一水準(zhǔn)點(diǎn)的高程 ,其結(jié)果各不相同。一、二等水準(zhǔn)路線定期重復(fù)測(cè)量 ,用以研究地殼垂直運(yùn)動(dòng)。為國家經(jīng)濟(jì)建設(shè)、國防建設(shè)和科學(xué)研究提供地面點(diǎn)高程 ,也為天文大地網(wǎng)、地形圖測(cè)制提供高程控制。為保證三角高程網(wǎng)的精度,網(wǎng)中應(yīng)有一定數(shù)量的已知高程點(diǎn),這些點(diǎn)由直接水準(zhǔn)測(cè)量或水準(zhǔn)聯(lián)測(cè)求得。 ( 3) 三角高程測(cè)量: 三角高程測(cè)量是根據(jù)兩點(diǎn)間的豎直角和水平距離計(jì)算高差而求出高程的,其精度低于水準(zhǔn)測(cè)量。各等級(jí)水準(zhǔn)測(cè)量都可作為測(cè)區(qū)的首級(jí)高程控制。此法檢核條件少,推算方位角的精度較低。 ( 2) 導(dǎo)線測(cè)量: 導(dǎo)線測(cè)量布設(shè)簡單,每點(diǎn)僅需與前后兩點(diǎn)通視,選點(diǎn)方便,特別是在隱蔽地區(qū)和建筑物多而通視困難的城市,應(yīng)用起來方便靈活。對(duì)于地形測(cè)圖,等級(jí)控制是擴(kuò)展圖根控制的基礎(chǔ),以保證所測(cè) 地形圖 能互相拼接成為一個(gè)整體。 在一定的區(qū)域內(nèi)為地形測(cè)圖或工程測(cè)量建立控制網(wǎng)(區(qū)域控制網(wǎng))所進(jìn)行的測(cè)量工作。 附錄 A 譯文 控制測(cè)量 的意義與方法 控制測(cè)量 在一定 區(qū)域 內(nèi),為 大地測(cè)量、攝影測(cè)量 、 地形測(cè)量 或 工程測(cè)量 建立控制網(wǎng)所進(jìn)行的 測(cè)量 。分為平面控制測(cè)量和高程控制測(cè)量。對(duì)于工程測(cè)量,常需布設(shè)專用控制網(wǎng),作為施工放樣 和變形觀測(cè)的依據(jù)。隨著電磁波測(cè)距儀的發(fā)展,導(dǎo)線測(cè)量的應(yīng)用日益廣泛。 高程控制網(wǎng) 包括: ( 2) 水準(zhǔn)測(cè)量: 用水準(zhǔn)測(cè)量方法建立的高程控制網(wǎng)稱為水準(zhǔn)網(wǎng)。首級(jí)網(wǎng)一般布設(shè)成環(huán)形網(wǎng),加密時(shí)可布設(shè)成附合線路或結(jié)點(diǎn)網(wǎng)。常在地形起伏較大、直接水準(zhǔn)測(cè)量有困難的地區(qū)測(cè)定三角點(diǎn)的高程,為地形測(cè)圖提供高程控制。為了盡可能消除地球曲率和大氣垂直折光的影響,每邊均應(yīng)相向觀測(cè)。 國家水準(zhǔn)網(wǎng)采用由高級(jí)到低級(jí) ,分幾個(gè)等級(jí)布設(shè) ,逐級(jí)控制、 加密。為了計(jì)算觀測(cè)高差的有關(guān)改正 ,沿一、二等水準(zhǔn)路線還要實(shí)施重力測(cè)量。國家水準(zhǔn)網(wǎng)一般采用一個(gè)驗(yàn)潮站所確定的平均海面作為水準(zhǔn)基面。邊角共測(cè)可充分發(fā)揮兩者的優(yōu)點(diǎn),提高點(diǎn)位精度。在 2 個(gè)以上 已知點(diǎn)上對(duì)待定點(diǎn)觀測(cè)水平角 ,而求出待定點(diǎn)平面位置的,稱為前方交會(huì)法 。分級(jí)布網(wǎng)通常先布設(shè)大范圍的首級(jí)網(wǎng),再分階段進(jìn)行低級(jí)控制點(diǎn)的加密。 區(qū)域控制網(wǎng)一般在國家控制網(wǎng)下加密,或以國家控制網(wǎng)為起算數(shù)據(jù),以便統(tǒng)一坐標(biāo)系統(tǒng)。三角網(wǎng)所需的起始邊長可用測(cè)距儀器直接測(cè)出。觀測(cè)成果一般應(yīng)歸化到參考橢球面(或 大地水準(zhǔn)面 )上,并按高斯正形投影計(jì)算 3176。 帶中央子午線時(shí),應(yīng)以測(cè)區(qū)中部子午線為中央子午線,采用任意帶高斯正形投影(見高斯-克呂格爾平面直角坐標(biāo)系)。 平差計(jì)算 建立平面控制網(wǎng)和高程控制網(wǎng)時(shí),為了進(jìn)行檢核和提高精度,常有一定數(shù)量的多余觀測(cè)。測(cè)量平差的目的在于消除各觀測(cè)值間的矛盾,以求得最可靠的結(jié)果和評(píng)定測(cè)量結(jié)果的精度。計(jì)量科學(xué)與測(cè)繪科學(xué)都是以物理學(xué)、數(shù)學(xué)及近代計(jì)算機(jī)科學(xué)為基礎(chǔ)的學(xué)科,本質(zhì)上兩者是相容、一致的。有了多余觀測(cè),勢(shì)必在觀測(cè)結(jié)果之間產(chǎn)生矛盾,測(cè)量平差的目的就在于消除這些矛盾而求得觀測(cè)量的最可靠結(jié)果并評(píng)定測(cè)量成果的精度。當(dāng)然要求偏差越小越好,但由于可正可負(fù),因此不能認(rèn)為總偏差時(shí),函數(shù)就很好地反映了變量之間的關(guān)系,因?yàn)榇藭r(shí)每個(gè)偏差的絕對(duì)值可能很 大。 其精確定義可以從一組測(cè)定的數(shù)據(jù)中尋求變量之 間的依賴關(guān)系 ,這種函數(shù)關(guān)系稱為經(jīng)驗(yàn)公式。為了改進(jìn)這一缺陷 ,就考慮來代替。 測(cè)繪中廣泛使用的測(cè)量平差法,是基于最小二乘原理的測(cè)量數(shù)據(jù)處理方法,它是利用直接測(cè)量采集觀測(cè)數(shù)據(jù)(觀測(cè)向量),再利用此觀測(cè)數(shù)據(jù)( 觀測(cè)向量)結(jié)合平差 數(shù)學(xué)模型,對(duì)被測(cè)量結(jié)果進(jìn)行估計(jì)的過程,估計(jì)方法采用 “ 數(shù)理統(tǒng)計(jì)學(xué) ” 中著名的 “ 最小二乘法 ” 。 測(cè)量平差法雖然包括了一定的現(xiàn)場(chǎng)測(cè)量條件,但其測(cè)量結(jié)果(平差結(jié)果)只是測(cè)得值所處范圍的一個(gè)參數(shù)(隨機(jī)誤差)。隨機(jī)誤差(平差結(jié)果)是由于測(cè)量時(shí)的隨機(jī)因素或效應(yīng)所引起的相對(duì)于被測(cè)量真值的偏差,這種隨機(jī)因素或效應(yīng),將導(dǎo)致重復(fù)測(cè)量時(shí)測(cè)量結(jié)果值的分散性。僅考慮隨機(jī)不確定性,是不全面不客觀的。s curvature and atmospheric refraction perpendicular to the impact of observation on each side should be opposite. National leveling work Within the national territory, by a series of unified specifications laid by country and determination of the standard point of elevation posed by the work. Also known as the national vertical control work. The national economic construction, national defense and scientific research to provide the ground point elevation, but also for Terrestrial Network, topographic measurement system to provide elevation control. Network of national standards adopted by the senior to junior, layout in several levels, sequential control, encryption. Form for each grade level closed loop route. The first and second line is the vertical control work level basis, along the tectonic stability of the traffic route steep, the layout and facilities with precise leveling measurements. The first and second level route regularly repeated measurements to study the vertical crustal movement. To calculate the observed height difference of the correction, along the first and second line will also carry the standard of gravity measurements. Third and fourth level line encryption first and second level of direct measurement system for the topographic maps provide elevation control. In order to establish a unified national control work, to establish a level base surface, as a work for all levels starting point elevation datum, usually the geoid as a standard base surface, it is a longterm coastal tide gauge sea surface fluctuation Observations were averaged and determined. Strictly speaking, different from the mean tide gauge sea to seek the same level as the base point of elevation, and the results vary. National level works generally use a tide gauge sea as determined by the average level of base level. Tide gauge stations in the vicinity of a permanent standard of origin, the level base surface and reliable calibration of the ground, measured by the leveling tide stations for the origin of the average sea surface elevation, calculated as the national standard height of the base work. Corner measurement Corner measurement point of view both the observation control work, but also measure side. Help control the direction of angular error, measured edge help control the length of the error. Measurement can give full play to the corner of the advantages of both, to improve location precision. In the engineering survey, not necessarily the perspective of observing works and all the side, you can angle the basis of additional testing part of the side, or in the test work based on the plus side some of the angle measured in order to achieve the required accuracy . Small triangle in a small test area is measured to establish a method of horizontal control work, which are used for small test area of the Primary Horizontal Control or third and fourth triangular following encryption, as a direct extension for topographic mapping in the Mapping Control Network (dot) foundation. In addition, Intersection encryption method is a method of horizontal control points. Known in two or more fixed observation point treatment of the horizontal angle, and find the location to be determined point plane, called the forward intersection method。 with a central