freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

外文翻譯--車輛檢測技術(shù)在交通管理上的應(yīng)用-交通線路-wenkub

2023-05-19 05:49:36 本頁面
 

【正文】 and highway surveillance and control systems to create smart corridors that increase the effectiveness of the transportation work. The infrastructure improvements and new technologies are, in turn, being integrated with munications and displays in smart cars and public access areas (such as shopping centers) to form intelligent transportation systems. Vehicle detectors are an integral part of these modern traffic control systems. The types of traffic flow data, as well as their reliability, consistency, accuracy, and precision, and the detector response time are some of the critical parameters to be evaluated when choosing a vehicle detector. These attributes bee even more important as the number of detectors proliferate and the realtime control aspects of ITS put a premium on the quantity and quality of traffic flow data, as well as the ease of data interpretation and integration into the existing traffic control system. Current vehicle detection is based predominantly on inductive loop detectors (ILDs) installed in the roadway subsurface. When properly installed and maintained, they can provide realtime data and a historical database against which to pare and evaluate more advanced detector systems. Alternative detector technologies being developed provide direct measurement of a wider variety of traffic parameters, such as density (vehicles per mile per lane), travel time, and vehicle turning movement. These advanced detectors supply more accurate data, parameters that are not directly measured with previous instruments, inputs to areawide surveillance and control of signalized intersections and freeways, and support of motorist information services. Furthermore, many of the advanced detector systems can be installed and maintained without disrupting traffic flow. The less obtrusive buried detectors will continue to find applications in the future, as for example, where aesthetic concerns are dominant or procedures are in place to monitor and repair malfunctioning units on a daily basis. Newer detectors with serial outputs currently require specific software to be written to interpret the traffic flow parameters embedded in the data stream. Since each detector manufacturer generally uses a proprietary serial protocol, each detector with a unique protocol requires corresponding software. This increases the installation cost or the real purchase price of the detector. Furthermore, not every detector outputs data on an individual vehicle basis. While some do, others integrate the data and output the results over periods that range from tens of seconds to minutes, producing parameters that are characteristic of macroscopic traffic flow. The traffic management agency must thus use caution when paring outputs from dissimilar detectors. In performing the technology evaluations and in analyzing the data, focus was placed on the underlying technology upon which the detectors were based [1,2]. It was not the purpose of the program to determine which specific detectors met a set of requirements, but rather whether the sensing technology they used had merit in measuring and reporting traffic data to the accuracy needed for present a nd future applications. Obviously, there can be many implementations of a technology, some of which may be b
點擊復(fù)制文檔內(nèi)容
畢業(yè)設(shè)計相關(guān)推薦
文庫吧 www.dybbs8.com
備案圖片鄂ICP備17016276號-1