freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

20xx年中考數(shù)學卷精析版荊門卷-wenkub

2022-08-30 21:46:59 本頁面
 

【正文】 OA, ⊙ P分別與OA、 OC、 BC相切于點 E、 D、 B,與 AB交于點 F.已知 A( 2, 0), B( 1, 2),則 tan∠ FDE= ▲ . 【答案】 12 。故選 B。 故選 C。 【分析】 ∵ 多項式 x2﹣ kx+1 是一個完全平方式 , ∴ k=177。 ∴ PE=12 BP= 3 。 ∵ BF=2, FQ⊥ BP, ∴ BQ=BF?cos30176。故選 D。 4 【考點】 反比例函數(shù)綜合題,曲線上點的坐標與方程的關(guān)系,平行四邊形的性質(zhì)。 【考點】 網(wǎng)格問題,勾股定理,相似三角形的判定。 【考點】 關(guān)于 x軸對稱的點坐標 的特征,平面直角坐標系中各象限點的特征, 解一元一次不 等式組,在數(shù)軸上表示不等式的解集。 【分析】 分別計算該組數(shù)據(jù)的眾數(shù)、平均數(shù)、中位數(shù)及極差后,選擇正確的答案即可: A. ∵ 3 出現(xiàn)了 2 次,最多, ∴ 眾數(shù)為 3,故此選項正確; B. ∵ 排序后為: 2, 3, 3, 6, 7, 9, ∴ 中位數(shù)為:( 3+6) 247。 ∴ x+y=12+15=27。故選 B。 ∴∠ EFC=90176。+25176。 D. 45176。角的直角三角板如圖所示放置, ∠ 1=25176。則 ∠ 2等于【 】 A. 30176。 【答案】 B。=55176。﹣ 55176。 4. ( 2020 湖北荊門 3 分) 若 x 2y+9? 與 |x﹣ y﹣ 3|互為相反數(shù),則 x+y的值為【 】 A. 3 B. 9 C. 12 D. 27 【答案】 D。故選 D。2=,故此選項錯誤; C. 2+3+6+9+3+7x = =55 ;故此選項正確; D.極差是 9﹣ 2=7,故此選項正確。 【分析】 由題意得,點 M關(guān)于 x軸對稱的點的坐標為:( 1﹣ 2m, 1﹣ m), 3 又 ∵ M( 1﹣ 2m, m﹣ 1)關(guān)于 x軸的對稱點在第一象限, ∴ 1 2m 01 m 0??? ??,解得: 1m 2m1?????,在數(shù)軸上表示為: 。 【分析】 根據(jù)勾股定理, AB=22, BC= 2 , AC= 10 , ∴ △ ABC的三邊之比為 2 : 2 2 : 1 0 = 1 : 2 : 5。 【分析】 設(shè) A的縱坐標是 a,則 B的縱坐標也是 a. 把 y=a代入 2y=x 得, 2a=x ,則 2x=a ,即 A的橫坐標是 2a ;同理可得: B的橫坐標是: 3a? 。 9. ( 2020湖北荊門 3分) 如圖, △ ABC是等邊三角形, P是 ∠ ABC的平分線 BD上一點, PE⊥ AB于點 E,線段 BP的垂直平分線交 BC于點 F,垂足為點 Q.若 BF=2,則 PE的長為【 】 A. 2 B. 2 C. D. 3 【答案】 C。=2 3=32 。故選 C。2。 12. ( 2020 湖北荊門 3 分) 已知:順次連接矩形各邊的中點,得到一個菱形,如圖 ① ;再順次連接菱形各邊的中點,得到一個新的矩形,如圖 ② ;然后順次連接新的矩形各邊的中點,得到一個新的菱形,如圖③ ;如此反復操作下去,則第 2020 個圖形中直角三角形的個數(shù)有【 】 A. 8048 個 B. 4024 個 C. 2020 個 D. 1066 個 【答案】 B。 二、填空題(本大題共 5 個小題,每小題 3 分,共 15 分) 13. ( 2020 湖北荊門 3 分) 計算 ? ? ? ?021 2 3 216 ?? ? ? ?= ▲ . 【答案】 1? 。 【考點】 切線的性質(zhì),銳角三角函數(shù)的定義,圓周角定理。 ∴ AE 1tan ABE BE 2? ? ?。 【分析】 根據(jù)該幾何體的三視圖知道其是一個六棱柱, ∵ 其高為 12cm,底面半徑為 5 cm, ∴ 其側(cè)面積為 6512=360cm2。 【分析】 根據(jù)新定義得: y=x+ m- 2, ∵ “關(guān)聯(lián)數(shù) ”[1, m- 2]的一次函數(shù)是正比例函數(shù), ∴ m﹣ 2=0,解得: m=2。 8 【考點】 動點問題的函數(shù)圖象,矩形的性質(zhì),勾股定理,銳角三角函數(shù)定義,相似三角形的判定和性質(zhì)。 又 ∵ 從 M到 N的變化是 2, ∴ ED=2。 過點 P作 PF⊥ BC于點 F, ∵ AD∥ BC, ∴∠ AEB=∠ PBF,∴ sin∠ PBF=sin∠ AEB= AB 4=BE 5 。 當 29t 4? 秒時,點 P在 CD上, 此時, PD=294 - BE- ED= 29 15 2=44?? , PQ=CD- PD=4- 1 15=44。故結(jié)論 ④ 正確。 【考點】 分式的化簡求值,二次根式化簡。 ∴ AB=AE, ∠ ABC=∠ E。 ( 2)由題意易得 △ ABC≌△ AED,即可得 AB=AE, ∠ ABC=∠ E,然后利用 ASA的判定方法,即可證得 △ AFB≌△ AGE。600=20%; 喜愛 A粽的頻率: 180247。 答:他第二個吃到的恰好是 C粽的概 率是 14 。 ( 3)用總?cè)藬?shù)乘以喜愛 D粽的所占的百分比即可?!郑?tan56176。 ∵ 四邊形 ABCD是等腰梯形, AE⊥ DC, FN⊥ AB, ∴ AE=FN=3m, DC=AB+2DE。 【考點】 解直角三角形的應用,垂徑定理,勾股定理,等腰梯形的性質(zhì),銳角三角函數(shù)定義。 當 k≠1時,函數(shù)為二次函數(shù) ,其圖象與 x軸有一個或兩個交點, 令 y=0 得( k﹣ 1) x2﹣ 2kx+k+2=0. 13 △ =(﹣ 2k) 2﹣ 4( k﹣ 1)( k+2) ≥0,解得 k
點擊復制文檔內(nèi)容
高考資料相關(guān)推薦
文庫吧 www.dybbs8.com
備案圖片鄂ICP備17016276號-1