【總結(jié)】第二章點(diǎn)、直線、平面之間的位置關(guān)系本章教材分析本章將在前一章整體觀察、認(rèn)識(shí)空間幾何體的基礎(chǔ)上,以長方體為載體,使學(xué)生在直觀感知的基礎(chǔ)上,認(rèn)識(shí)空間中點(diǎn)、直線、平面之間的位置關(guān)系;通過大量圖形的觀察、實(shí)驗(yàn)和說理,使學(xué)生進(jìn)一步了解平行、垂直關(guān)系的基本性質(zhì)以及判定方法,學(xué)會(huì)準(zhǔn)確地使用數(shù)學(xué)語言表述幾何對(duì)象的位置關(guān)系,初步體驗(yàn)公理化思想,培養(yǎng)邏輯思維能力,并
2024-12-08 07:06
【總結(jié)】220DxEyFyx??????教學(xué)目標(biāo):能將圓的一般方程化為圓的標(biāo)準(zhǔn)方程從而求出圓心的坐標(biāo)和半徑;能用待定系數(shù)法,由已知條件導(dǎo)出圓的方程.?教學(xué)重點(diǎn):(1)能用配方法,由圓的一般方程求出圓心坐標(biāo)和半徑;(2)能用待定系數(shù)法,由已知條件導(dǎo)出圓的方程.?教學(xué)難點(diǎn):圓的一般方程的特點(diǎn).?教學(xué)疑點(diǎn):圓的一般方程中要加限制條件.
2025-08-05 18:23
【總結(jié)】圓的標(biāo)準(zhǔn)方程一、選擇題1.已知點(diǎn)P(3,2)和圓的方程(x-2)2+(y-3)2=4,則它們的位置關(guān)系為()A.在圓心B.在圓上C.在圓內(nèi)D.在圓外解析:選C∵(3-2)2+(2-3)2=2<4,∴點(diǎn)P在圓內(nèi).2.圓(x+1)2+(y-2)2=4的圓心、半徑是()
2024-12-08 07:03
【總結(jié)】直線的點(diǎn)斜式方程復(fù)習(xí).,),,(),,(2.122211的斜率那么直線如果已知直線上兩點(diǎn)PQxxyxQyxP?的定義及其取值范圍;???xyO),(22yxQ),(11yxP直線的傾斜角的取值范圍是:[00,1800)B?tan???????xyk1212xxyy
2025-11-09 12:11
【總結(jié)】課題:圓的一般方程課型:新授課教學(xué)目標(biāo):,理解記憶圓的一般方程的代數(shù)特征,由圓的一般方程確定圓的圓心半徑.掌握方程x2+y2+Dx+Ey+F=0表示圓的條件.,把圓的一般方程化為圓的標(biāo)準(zhǔn)方程.能用待定系數(shù)法求圓的方程。教學(xué)重點(diǎn):圓的一般方程的代數(shù)特征,一般方程與標(biāo)準(zhǔn)方程間的互化,根據(jù)已知條件確定方程中的系數(shù)D、E、F.教學(xué)難點(diǎn):對(duì)圓的一般方程的
2025-06-07 19:14
【總結(jié)】云南省曲靖市麒麟?yún)^(qū)第七中學(xué)高中數(shù)學(xué)直線的點(diǎn)斜式方程學(xué)案新人教A版必修2【學(xué)習(xí)目標(biāo)】【學(xué)習(xí)重點(diǎn)】理解直線的點(diǎn)斜式方程和斜截式方程的特征【學(xué)習(xí)難點(diǎn)】掌握根據(jù)已知條件求直線的點(diǎn)斜式方程和斜截式方程【自主學(xué)習(xí)】問題1:若果把直線當(dāng)作結(jié)論,那么確定一條直線需要幾個(gè)條件?如何根據(jù)所給條件
2024-12-04 23:45
【總結(jié)】§問題提出、斜截式、兩點(diǎn)式、截距式等基本形式,這些方程的外在形式分別是什么?,對(duì)立與統(tǒng)一的觀點(diǎn)看問題,我們希望這些直線方程能統(tǒng)一為某個(gè)一般形式,對(duì)此我們從理論上作些探究.直線名稱已知條件直線方程使用范圍kyxP),,(111)(11
2025-10-03 14:37
【總結(jié)】兩條直線的交點(diǎn)坐標(biāo)一、教材分析本節(jié)課從知識(shí)內(nèi)容來說并不是很難,但從解析幾何的特點(diǎn)看,就需要培養(yǎng)學(xué)生如何利用直線方程來討論其特點(diǎn),得到直線交點(diǎn),以及交點(diǎn)個(gè)數(shù)對(duì)應(yīng)于直線在平面內(nèi)的相對(duì)位置關(guān)系.在教學(xué)過程中應(yīng)該圍繞兩直線一般方程的系數(shù)的變化來揭示兩直線方程聯(lián)立解的情況,從而判定兩直線的位置特點(diǎn),設(shè)置平面內(nèi)任意兩直線方程組解的情況的討論,為課題引入
2024-12-08 02:41
【總結(jié)】直線與圓的位置關(guān)系一、教材分析學(xué)生在初中的學(xué)習(xí)中已了解直線與圓的位置關(guān)系,并知道可以利用直線與圓的交點(diǎn)的個(gè)數(shù)以及圓心與直線的距離d與半徑r的關(guān)系判斷直線與圓的位置關(guān)系,但是,在初中學(xué)習(xí)時(shí),利用圓心與直線的距離d與半徑r的關(guān)系判斷直線與圓的位置關(guān)系的方法卻以結(jié)論性的形式呈現(xiàn).在高一學(xué)習(xí)了解析幾何以后,要考慮的問題是如何掌握由直線
2024-12-08 02:40
【總結(jié)】點(diǎn)到直線的距離學(xué)習(xí)目標(biāo):1、會(huì)應(yīng)用點(diǎn)到直線的距離公式求點(diǎn)到直線的距離。2、掌握兩條平行直線間的距離公式并會(huì)應(yīng)用。3、能綜合應(yīng)用平行與垂直的關(guān)系解決有關(guān)距離問題。知識(shí)梳理自學(xué)檢測1、原點(diǎn)到直線3x+4y-26=0的距離是()A、7726B
【總結(jié)】復(fù)習(xí)回顧點(diǎn)斜式y(tǒng)-y1=k(x-x1)斜截式y(tǒng)=kx+b已知直線l過A(3,-5)和B(-2,5),求直線l的方程。解:∵直線l過點(diǎn)A(3,-5)和B(-2,5)??23255????????lk將A(3,-5),k=-2代入點(diǎn)斜式,得
2025-11-08 12:11
【總結(jié)】云南省曲靖市麒麟?yún)^(qū)第七中學(xué)高中數(shù)學(xué)直線的兩點(diǎn)式方程學(xué)案新人教A版必修2【學(xué)習(xí)目標(biāo)】,并能運(yùn)用這兩種形式求出直線的方程,培養(yǎng)學(xué)生樹立辯證統(tǒng)一的觀點(diǎn)【學(xué)習(xí)重點(diǎn)】直線方程兩點(diǎn)式和截距式【學(xué)習(xí)難點(diǎn)】關(guān)于兩點(diǎn)式的推導(dǎo)以及斜率k不存在或斜率0?k時(shí)對(duì)兩點(diǎn)式方程的討論及變形【自主學(xué)習(xí)】問題
2024-12-05 06:43
【總結(jié)】兩條平行直線間的距離一、教材分析點(diǎn)到直線的距離是“直線與方程”這一節(jié)的重點(diǎn)內(nèi)容,它是解決點(diǎn)線、線線間的距離的基礎(chǔ),也是研究直線與圓的位置關(guān)系的主要工具.點(diǎn)到直線的距離公式的推導(dǎo)方法很多,可探究的題材非常豐富.除了本節(jié)課可能探究到的方法外,還有應(yīng)用三角函數(shù)、應(yīng)用向量等方法.因此“課程標(biāo)準(zhǔn)”對(duì)本節(jié)教學(xué)內(nèi)容的要求是:“探索
【總結(jié)】§直線的方程§直線的點(diǎn)斜式方程一、教材分析直線方程的點(diǎn)斜式給出了根據(jù)已知一個(gè)點(diǎn)和斜率求直線方程的方法和途徑.在求直線的方程中,直線方程的點(diǎn)斜式是基本的,直線方程的斜截式、兩點(diǎn)式都是由點(diǎn)斜式推出的.從一次函數(shù)y=kx+b(k≠0)引入,自然地過渡到本節(jié)課想要解決的問題——求直線的方程問題.在引入過程中
2025-11-10 00:41
【總結(jié)】ArxyO圓的標(biāo)準(zhǔn)方程醒民高中數(shù)學(xué)組孫鵬飛趙州橋,建于隋煬帝大業(yè)年間(595-605年),至今已有1400年的歷史,出自著名匠師李春之手,是今天世界上最古老的單肩石拱橋,是世界造橋史上的一個(gè)創(chuàng)造。我們?cè)谇懊鎸W(xué)過,在平面直角坐標(biāo)系中,兩點(diǎn)確定一條直線,一點(diǎn)和傾斜角也能確定一條直線.在平面直角
2025-11-08 12:03