【總結(jié)】課題:確定二次函數(shù)的表達式課型:新授課年級:九年級教學目標:1.會用待定系數(shù)法確定二次函數(shù)的表達式.2.能根據(jù)二次函數(shù)圖象上點的特點,靈活選擇合適的表達式.教學重、難點:重點:會用待定系數(shù)法確定二次函數(shù)的表達式.難點:能根據(jù)二次函數(shù)圖象上點的特點,靈活選擇合適的表達式.課前準備:多
2024-12-09 12:44
【總結(jié)】第二章二次函數(shù)知識點1用一般式(三點式)確定二次函數(shù)表達式(1,0),(2,0)和(0,2)三點的二次函數(shù)的表達式是(D)=2x2+x+2=x2+3x+2=x2-2x+3=x2-3x+2y軸交點的縱坐標為1,且經(jīng)過點(2,5)和(-2,13),求這個二次函數(shù)的表達式.
2025-06-18 00:27
【總結(jié)】確定二次函數(shù)的表達式一、選擇題(共20小題;共100分)1.在拋物線上的一個點是()A.()B.()C.()D.()2.二次函數(shù)()的圖象經(jīng)過點(),則代數(shù)式的值為(
2024-11-15 02:37
【總結(jié)】確定二次函數(shù)的表達式第二章二次函數(shù)導入新課講授新課當堂練習課堂小結(jié)學習目標.(難點).(重點)導入新課復(fù)習引入y=kx+b(k≠0)有幾個待定系數(shù)?通常需要已知幾個點的坐標求出它的表達式??它的一般步驟是什么?2個2個待定系數(shù)法(1)設(shè):(表達式)
2025-06-18 00:42
【總結(jié)】3確定二次函數(shù)的表達式【基礎(chǔ)梳理】確定二次函數(shù)表達式的一般方法已知條件選用表達式的形式頂點和另一點的坐標_______二次函數(shù)各項系數(shù)中的一個和兩點的坐標_______三個點的坐標_______頂點式一般式一般式【自我診斷】1.(1)確定二次函數(shù)的表達式一般需要三個條件.(
2025-06-14 06:48
【總結(jié)】3確定二次函數(shù)的表達式..二次函數(shù)解析式有哪幾種表達方式?一般式:y=ax2+bx+c頂點式:y=a(x-h)2+k如何求二次函數(shù)的解析式?已知二次函數(shù)圖象上三個點的坐標,可用待定系數(shù)法求其解析式.交點式:y=a(x-x1)(x-x2)解析:設(shè)所求的二次函數(shù)為y=ax2+bx+c,由條件得:
2025-06-15 02:54
2025-06-12 13:43
2025-06-19 07:25
2025-06-15 03:00
【總結(jié)】確定二次函數(shù)的表達式一、選擇題:1.已知拋物線過A(-1,0),B(3,0)兩點,與y軸交于C點,且BC=32,則這條拋物線的解析式為()A.y=-x2+2x+3B.y=x2-2x-3C.y=x2+2x―3或y=-x2+2x+3D.y=-
2024-11-28 17:51
【總結(jié)】用三種方式表達二次函數(shù)——確定二次函數(shù)的表達式一、選擇題y=21x2+2x+1寫成y=a(x-h(huán))2+k的形式是=21(x-1)2+2=21(x-1)2+21=21(x-1)2-3=21(x+2)2-1y=-2x2-x+1的頂點在第_____象限
2024-12-05 05:43
【總結(jié)】謝謝觀看Thankyouforwatching!
2025-06-13 20:04
【總結(jié)】確立二次函數(shù)表達式【教學內(nèi)容】確立二次函數(shù)表達式(二)【教學目標】知識與技能學會運用待定系數(shù)法求二次函數(shù)表達式,熟練應(yīng)用已知圖象上三個點能確定二次函數(shù)解析式。過程與方法經(jīng)歷二次函數(shù)表達式確定的又一基本方法,對待定系數(shù)法求函數(shù)解析式有更深入的了解。情感、態(tài)度與價值觀在確立二次函數(shù)表達式過程式中體驗學數(shù)學、用數(shù)學的樂趣。
2024-11-19 15:45
【總結(jié)】數(shù)學教學設(shè)計教材:義務(wù)教育教科書·數(shù)學(九年級下冊)作者:吳昊(連云港市外國語學校)用待定系數(shù)法確定二次函數(shù)表達式教學目標1.通過對用待定系數(shù)法求二次函數(shù)表達式的探究,掌握求二次函數(shù)表達式的方法;2.能靈活的根據(jù)條件恰當?shù)剡x擇表達式,體會二次函數(shù)表達式之間的轉(zhuǎn)化;3.從學習過程
2024-12-09 13:13
【總結(jié)】勤勉而頑強地鉆研,永遠可以使你百尺竿頭更進一步。
2024-12-07 22:58