【總結】第一頁,編輯于星期六:七點五十一分。,,,第二頁,編輯于星期六:七點五十一分。,第三頁,編輯于星期六:七點五十一分。,,第四頁,編輯于星期六:七點五十一分。,第五頁,編輯于星期六:七點五十一分。,第六...
2025-10-13 03:57
【總結】第一篇:八年級數(shù)學_勾股定理的逆定理說課稿(精品教案) 勾股定理的逆定理說課稿 尊敬的各位評委,各位老師,大家好: 我今天說課的內(nèi)容是《勾股定理的逆定理》第一課時。下面我將從教材、目標、重點難點...
2024-11-04 17:21
【總結】第14章勾股定理勾股定理2022秋季數(shù)學八年級上冊?HS在證明一個命題時,有時先假設,從這樣的假設出發(fā),經(jīng)過推理得出和已知條件矛盾,或者與定義、公理、定理等矛盾,從而得出假設命題,即所求證的命題,這種證明方法叫做反證法.自我診斷1.用反證法證明“
2025-06-12 12:43
【總結】第一頁,編輯于星期六:七點五十一分。,第二頁,編輯于星期六:七點五十一分。,,第三頁,編輯于星期六:七點五十一分。,第四頁,編輯于星期六:七點五十一分。,第五頁,編輯于星期六:七點五十一分。,第六頁,...
2025-06-12 12:41
【總結】第14章勾股定理勾股定理的應用第1課時勾股定理的應用1.勾股定理的變形:若直角三角形的兩直角邊分別為a、b,斜邊為c,則a2+b2=c2或a2=或b2=或a=或b=.2.
2025-06-19 17:54
【總結】勾股定理的逆定理古埃及人把一根繩子打上等距離的13個結,然后把第1個結和第13個結用木樁釘在一起,再分別用木樁把第4個結和第8個結釘牢(拉直繩子)。三角形的三邊有什么關系呢?(1)(3)(2)(4)(5)(6)(7)(8)(9)(10)(11)(12)
2024-12-01 00:51
【總結】第一章勾股定理專題突破一勾股定理的應用2022秋季數(shù)學八年級上冊?B類型1利用勾股定理求線段長1.在△ABC中,AB=AC=5,BC=6.若點P在邊AC上移動,求BP最小值是多少?解:過A作AD⊥BC于D,∵AB=AC=5,BC=6
2025-06-19 18:04
【總結】美國哥倫比亞大學圖書館收藏著一塊編號為“普林頓“322”(plinmpton322)的古巴比倫泥板,上面密密麻麻的寫著什么呢?你知道這些數(shù)組揭示什么奧秘嗎?勾股定理的逆定理學習目標三角形的三邊之間滿足怎樣數(shù)量關系時,此三角形是直角三角形?2.會應用直角三角形的判定條件判定一個三角形是直角三角形“形”與“數(shù)”的內(nèi)在聯(lián)系
2025-06-06 04:13
2025-06-21 05:34
【總結】第一篇:人教版八年級數(shù)學下冊《勾股定理逆定理》教學反思 人教版八年級數(shù)學下冊《勾股定理逆定理》教學反思 我國是最早了解勾股定理的國家之一。早在三千多年前,周朝數(shù)學家商高就提出,將一根直尺折成一個直...
2024-11-04 17:12
【總結】小專題(三)勾股定理與其逆定理的綜合應用勾股定理揭示了直角三角形三邊之間的關系,利用這個關系,在已知兩邊或者三邊之間的關系的基礎上可求出未知的邊的長.勾股定理的逆定理是判斷一個三角形為直角三角形的重要依據(jù)之一,所以這兩個知識點是中考必考內(nèi)容,可能單獨考查其中一個知識點,也可能把兩個知識點綜合起來考查.類型1勾股定理在折疊問題中的應用1
2025-06-17 17:00
【總結】第一頁,編輯于星期六:二點三十四分。,,,第二頁,編輯于星期六:二點三十四分。,第三頁,編輯于星期六:二點三十四分。,,第四頁,編輯于星期六:二點三十四分。,,,,第五頁,編輯于星期六:二點三十四分。...
2025-10-14 00:30
【總結】勾股定理的逆定理(3)逆定理:三角形的三邊a,b,c滿足a2+b2=c2,則這個三角形是直角三角形;較大邊c所對的角是直角.勾股定理:直角三角形的兩直角邊為a,b,斜邊為c,則有a2+b2=c23.以下各組數(shù)為三邊的三角形中,不是直角三角形的是().A.
2024-11-30 07:08
【總結】初中數(shù)學(北師大版)八年級上冊第一章勾股定理知識點一圓柱側面上兩點間的最短距離圓柱側面的展開圖是一個長方形.圓柱側面上兩點之間最短距離的求法是把圓柱側面展開成平面圖形,依據(jù)兩點之間線段最短,以最短路線為斜邊構造直角三角形,利用勾股定理求解.3勾股定理的應用例1如圖1-3-1所示,一個圓
2025-06-20 13:04