【總結(jié)】第一章三角形的證明線段的垂直平分線第2課時線段垂直平分線的應(yīng)用1課堂講解?三角形三邊的垂直平分線?線段垂直平分線的作圖及應(yīng)用2課時流程逐點導講練課堂小結(jié)作業(yè)提升線段的垂直平分線的性質(zhì)與判定的內(nèi)容是什么?復習回顧1知識點三角形三邊的垂直平分
2024-12-28 01:26
【總結(jié)】線段的垂直平分線(二)名山街道中學八年級數(shù)學備課組(二)學習目標1.會進行線段垂直平分線的尺規(guī)作圖。2.能作出軸對稱圖形的對稱軸。一、新課導入有時我們感覺兩個圖形是軸對稱的,如何驗證呢?不折疊圖形,你能比較準確地作出軸對稱圖形的對稱軸嗎?二、自學教材教材第62—64頁止。?
2025-09-21 12:31
【總結(jié)】.......1、線段垂直平分線的性質(zhì)(1)垂直平分線性質(zhì)定理:線段垂直平分線上的點到這條線段兩個端點的距離相等.定理的作用:證明兩條線段相等(2)線段關(guān)于它的垂直平分線對稱.3、關(guān)于三角形三邊垂直平分線的定理
2025-06-27 22:15
【總結(jié)】強灣中學導學案學科:數(shù)學年級:九年級主備人:王花香輔備人:張曉霞審批:教師活動(環(huán)節(jié)、措施)學生活動(自主參與、合作探究、展示交流)明確目標合作
2024-12-07 23:19
【總結(jié)】線段的垂直平分線致遠中學張繼昶NMBAP求證:線段垂直平分線上的點到這條線段的兩端點的距離相等定理:線段垂直平分線上的點到這條線段的兩端點的距離相等PBANM反之到一條線段的兩端點的距離相等的點是否一定在這條線段的垂直平分線上呢?求證:到一條線段的兩端點的距離
2024-11-10 13:13
【總結(jié)】線段垂直平分線的性質(zhì)定理已知:線段AB,直線EF⊥AB,垂足為O,AO=BO,點P是EF上異于點O的任意一點.求證:PA=PB.ABPEFO∴PA=PB。證明:∵EF⊥AB(已知),∴∠POA=∠POB=90°(垂直的定義)。在△PAO和△PBO中,
2024-11-11 07:33
2024-11-09 06:54
【總結(jié)】線段垂直平分線與角平分線教學目標線段垂直平分線與角平分線概念與定理以及逆定理的理解與應(yīng)用重點、難點線段垂直平分線與角平分線定理與逆定理的理解與應(yīng)用考點及考試要求定理與逆定理的應(yīng)用教學內(nèi)容知識要點詳解1、線段垂直平分線的性質(zhì)(1)垂直平分線性質(zhì)定理:線段垂直平分線上的點到這條線段
2024-12-08 03:24
【總結(jié)】§線段的垂直平分線§線段的垂直平分線老師給同學們出了這樣一道題:城A和城B相距10千米,如今政府為便利兩城居民生活,決定要建一個倉庫,使得倉庫到兩城距離相等,請同學們畫出倉庫位置.(1)這樣的倉庫位置惟一嗎?(2)請多畫出幾個倉庫,它們在一條直線上嗎?如果在,這條直線和AB有什
2024-11-15 00:40
【總結(jié)】九年級數(shù)學(上冊)第一章證明(二)(1)性質(zhì)定理與判定定理陽泉市義井中學高鐵牛駛向勝利的彼岸線段的垂直平分線?我們曾經(jīng)利用折紙的方法得到:?線段垂直平分線上的點到這條線段兩個端點距離相等.?你能證明這一結(jié)論嗎?回顧思考已知:如圖,AC=BC,MN⊥AB,P是MN上任意一點.
2024-11-30 00:25
【總結(jié)】線段的垂直平分線教學設(shè)計教學內(nèi)容分析:這節(jié)課是把電子白板與幾何畫板結(jié)合的一節(jié)新授課。線段的垂直平分線是對前一課時關(guān)于軸對稱圖形性質(zhì)的再認識,又是今后幾何作圖、證明、計算的基礎(chǔ)。學習過程中滲透的轉(zhuǎn)化、探索、歸納等數(shù)學思想方法對學生今后的數(shù)學學習也有重要的意義。學習線段垂直平分線相關(guān)知識是為學生創(chuàng)造了一次探究的機會,是學習幾何學的一次磨練。課題:線段的垂直平分線學習目標
2025-04-17 08:11
【總結(jié)】典型例題例1.如圖,已知:在中,,,BD平分交AC于D.求證:D在AB的垂直平分線上.分析:根據(jù)線段垂直平分線的逆定理,欲證D在AB的垂直平分線上,只需證明即可.證明:∵,(已知),∴(的兩個銳角互余)又∵BD平分(已知)∴.∴(等角對等邊)∴D在AB的垂直平分線上(和一條線段兩個端點距離相等的點,在這條線段的垂直平分線上).例2.如圖,已知
2025-03-25 07:09
【總結(jié)】年級八年級課題線段的垂直平分線課型新授課線段的垂直平分線【學習目標】1、經(jīng)歷線段的垂直平分線概念的形成過程,認識線段的軸對稱性,進一步體驗軸對稱的特征,發(fā)展空間觀念。2、會用尺規(guī)作出已知線段的垂直平分線,能規(guī)范的寫出已知、求作和作法。3、運用作圖和實驗的方法,探索線段的垂直平
2024-11-19 23:46
【總結(jié)】線段的垂直平分線◇教學目標:1.要求學生掌握線段垂直平分線的性質(zhì)定理及判定定理,能夠利用這兩個定理解決一些問題。2.能夠證明線段垂直平分線的性質(zhì)定理及判定定理。3.通過探索、猜測、證明的過程,進一步拓展學生的推理證明意識和能力?!蠼虒W重點:線段垂直平分線性質(zhì)定理及其逆定理。◇教學難點:線段垂直平分線的性質(zhì)定理及其逆定理的內(nèi)涵
2024-11-19 22:23
【總結(jié)】《簡單的軸對稱圖形》練習一、選擇——基礎(chǔ)知識運用1.到三角形三個頂點的距離都相等的點是這個三角形的( ?。〢.三條高的交點B.三條角平分線的交點C.三條中線的交點D.三條邊的垂直平分線的交點2.如圖,△ABC中,∠BAC=100°,DF,EG分別是AB,AC的垂直平分線,則∠DAE等于( ?。〢.50° B.45
2025-01-14 17:30