【總結(jié)】第2章平面解析幾何初步(B)(時間:120分鐘滿分:160分)一、填空題(本大題共4小題,每小題5分,共70分)1.若直線l1:ax+3y+1=0與l2:2x+(a+1)y+1=0互相平行,則a的值為________.2.下列說法正確的是________(填序號).①經(jīng)過定點P0(x0,
2024-12-05 10:19
【總結(jié)】章末檢測一、選擇題1.已知變量a,b已被賦值,要交換a、b的值,采用的算法是()A.a(chǎn)=b,b=aB.a(chǎn)=c,b=a,c=bC.a(chǎn)=c,b=a,c=aD.c=a,a=b,b=c2.如圖所示是求樣本x1,x2,…,x10平均數(shù)x的程序
2024-12-08 07:03
【總結(jié)】【成才之路】2021年春高中數(shù)學(xué)第3章不等式綜合測試北師大版必修5(時間:120分鐘滿分:150分)第Ⅰ卷(選擇題共60分)一、選擇題(本大題共12個小題,每小題5分,共60分,每小題有4個選項,其中有且僅有一個是正確的,把正確的選項填在答題卡中)1.若1a1b0,則下列不等式:
2024-11-28 17:46
【總結(jié)】第一篇:高中數(shù)學(xué)必修五不等關(guān)系與不等式教案 第三章不等式 必修5不等關(guān)系與不等式 一、教學(xué)目標(biāo) ,讓學(xué)生感受到現(xiàn)實生活中存在著大量的不等關(guān)系; (組)產(chǎn)生的實際背景的前提下,學(xué)習(xí)不等式的相關(guān)...
2025-10-19 17:51
【總結(jié)】第2章平面解析幾何初步(A)(時間:120分鐘滿分:160分)一、填空題(本大題共14小題,每小題5分,共70分)1.如果直線ax+2y+2=0與直線3x-y-2=0平行,則系數(shù)a的值為________.2.下列敘述中不正確的是________.①若直線的斜率存在,則必有傾斜角與之對應(yīng);
2024-12-05 00:28
【總結(jié)】第三章章末檢測(A)(時間:120分鐘滿分:150分)一、選擇題(本大題共12小題,每小題5分,共60分)1.原點和點(1,1)在直線x+y=a兩側(cè),則a的取值范圍是()A.a(chǎn)2B.0a2C.a(chǎn)=0或a=2
2024-12-05 06:44
【總結(jié)】基本不等式的證明課時目標(biāo);.1.如果a,b∈R,那么a2+b2____2ab(當(dāng)且僅當(dāng)______時取“=”號).2.若a,b都為____數(shù),那么a+b2____ab(當(dāng)且僅當(dāng)a____b時,等號成立),稱上述不等式為______不等式,其中________稱為a,b的算術(shù)平均數(shù),
2024-12-05 10:13
【總結(jié)】第三章不等式一、選擇題1.已知x≥,則f(x)=有().A.最大值 B.最小值 C.最大值1 D.最小值12.若x>0,y>0,則+的最小值是().A.3 B. C.4 D.3.設(shè)a>0,b>0則下列不等式中不成立的是().A.a(chǎn)+b+≥2 B.(a+b)(+)≥4C.≥a+b D
2025-06-18 13:52
【總結(jié)】章末檢測一、填空題1.已知平面α和平面β的法向量分別為m=(3,1,-5),n=(-6,-2,10),則平面α、β的位置關(guān)系為________.2.已知向量a=(0,2,1),b=(-1,1,-2),則a與b的夾角為________.3.如圖,在平行六面體ABCD—A1B1C1
2024-12-08 07:00
【總結(jié)】3.基本不等式的證明1.(a-b)2≥0?a2+b2≥2ab,那么(a)2+(b)2≥2ab,即a+b2≥ab,當(dāng)且僅當(dāng)a=b時,等號成立.+b2叫做a、b的算術(shù)平均數(shù).3.ab叫做a、b的幾何平均數(shù).4.基本不等式a+b2≥ab,說明兩個正數(shù)的幾何平均數(shù)不大于它們的
2024-12-08 20:20
【總結(jié)】 大家網(wǎng) 11/12高中數(shù)學(xué)不等式解題漫談一、活用倒數(shù)法則巧作不等變換——不等式的性質(zhì)和應(yīng)用不等式的性質(zhì)和運算法則有許多,如對稱性,傳遞性,,尤其是不等變換有很大的優(yōu)越性.倒數(shù)法則:若ab0,則ab與1.分析:當(dāng)a1時,原
2025-06-07 23:55
【總結(jié)】基本不等式的應(yīng)用課時目標(biāo);(小)值問題.1.設(shè)x,y為正實數(shù)(1)若x+y=s(和s為定值),則當(dāng)______時,積xy有最____值,且這個值為________.(2)若xy=p(積p為定值),則當(dāng)______時,和x+y有最____值,且這個值為______.2.利用
2024-12-05 10:12
【總結(jié)】章末檢測一、填空題1.由1=12,1+3=22,1+3+5=32,1+3+5+7=42,?,得到1+3+?+(2n-1)=n2用的是________推理.2.在△ABC中,E、F分別為AB、AC的中點,則有EF∥BC,這個問題的大前提為________________________
2024-12-05 06:24
【總結(jié)】【成才之路】2021年春高中數(shù)學(xué)第3章不等式3基本不等式第2課時基本不等式與最大(小)值同步練習(xí)北師大版必修5一、選擇題1.已知a≥0,b≥0,且a+b=2,則()A.a(chǎn)b≤12B.a(chǎn)b≥12C.a(chǎn)2+b2≥2D.a(chǎn)2+b2≤2[答案]C
2024-12-05 06:35
【總結(jié)】如果a,b∈R,那么a2+b2≥2ab(當(dāng)且僅當(dāng)a=b時取“=”)證明:222)(2baabba??????????????0)(0)(22babababa時,當(dāng)時,當(dāng)abba222??1.定理適用范圍:Rba?,2.取“=”的條件:ba?定理:
2024-11-18 08:48