【總結(jié)】兩角和與差的三角函數(shù)一、素質(zhì)教育目標(biāo)(一)知識教學(xué)點1.兩角和與差的正弦.2.兩角和與差的余弦.3.兩角和與差的正切.(二)能力訓(xùn)練點1.掌握兩角和與差的正弦、余弦、正切公式及其推導(dǎo).2.通過這些公式的推導(dǎo),使學(xué)生了解它們的內(nèi)在聯(lián)系,從而培養(yǎng)學(xué)生的邏輯推理能力.3.能靈活地應(yīng)用這些公式進行計算
2024-11-17 12:22
【總結(jié)】二倍角的正弦、余弦、正切公式學(xué)習(xí)目標(biāo):1、以兩角和正弦、余弦和正切公式為基礎(chǔ),推導(dǎo)二倍角正弦、余弦和正切公式2、二倍公式角的理解及其靈活運用回憶兩角和的正弦、余弦、正切公式??????sinsincoscos)cos(?????????sincoscossin)sin(
2024-11-18 08:49
【總結(jié)】3.兩角和與差的正弦上一節(jié)我們研究了兩角和與差的余弦,一個自然的想法是兩角和與差的正弦等于什么?即sin(α±β)=?本節(jié)我們就探索這樣的問題,并加以應(yīng)用.1.兩角差的正弦公式____________________________________,這個公式對任意α、β都成立.答案:sin(α
2024-12-09 03:40
【總結(jié)】§2兩角和與差的三角函數(shù)2.1兩角差的余弦函數(shù)2.2兩角和與差的正弦、余弦函數(shù),)1.問題導(dǎo)航(1)根據(jù)α+β=α-(-β),如何由Cα-β推出Cα+β?(2)對任意角α,β,cos(α-β)=cosα-cosβ成立嗎?(3)如
2024-11-28 00:14
【總結(jié)】第3章三角恒等變換兩角和與差的三角函數(shù)兩角和與差的余弦一、填空題1.cos15°的值是________.2.若cos(α-β)=13,則(sinα+sinβ)2+(cosα+cosβ)2=________.3.已知α、β均為銳角,且sinα=55,cosβ
2024-12-05 10:15
【總結(jié)】兩角和與差的正弦一、填空題1.sin245°sin125°+sin155°sin35°的值是________.2.若銳角α、β滿足cosα=45,cos(α+β)=35,則sinβ的值是________.3.已知cosαcosβ-sinαsin
【總結(jié)】兩角和與差的正弦、余弦、正切公式學(xué)習(xí)目標(biāo):1.掌握由兩角差的余弦公式推導(dǎo)出兩角和的余弦公式及兩角和與差的正弦公式.2.會用兩角和與差的正、余弦公式進行簡單的三角函數(shù)的求值、化簡、計算等.3.熟悉兩角和與差的正、余弦公式的靈活運用,了解公式的正用、逆用以及角的變換的常用方法.學(xué)習(xí)重點
2024-12-05 06:46
【總結(jié)】兩角和與差的正弦、余弦、正切公式學(xué)習(xí)目標(biāo):1.能利用兩角和與差的正、余弦公式推導(dǎo)出兩角和與差的正切公式.2.能利用兩角和與差的正切公式進行化簡、求值、證明.3.熟悉兩角和與差的正切公式的常見變形,并能靈活應(yīng)用.學(xué)習(xí)重點:兩角和、差正切公式的推導(dǎo)過程及運用學(xué)習(xí)難點:兩角和與差正切公式的靈活運用一.
【總結(jié)】兩角和與差的正弦、余弦、正切公式重點:公式的應(yīng)用.難點:公式的推導(dǎo)及變形應(yīng)用.六個公式的特征兩角和(差)的余弦:余余、正正、符號異(即公式右端分別是α與β的余弦之積,以及正弦之積,中間的符號與左邊相反);兩角和(差)的正弦:正余、余正、符號同;兩角和(差)的正切:分子同、分母異.它們的內(nèi)在聯(lián)系如下:一、和(差)角的余弦公式
【總結(jié)】兩角和與差的正弦、余弦、正切公式一、和角與差角公式應(yīng)用的規(guī)律兩角和與差的正、余弦公式主要用于求值、化簡、證明等三角變換,常見的規(guī)律如下:①配角的方法:通過對角的“合成”與“分解”,尋找欲求角與已知角的內(nèi)在聯(lián)系,靈活應(yīng)用公式,如α=(α+β)-β,α=21(α+β)+21(α-β)等.②公式的逆用與變形公式的活用
【總結(jié)】課題兩角和與差的正弦、余弦、正切公式(二)教學(xué)目標(biāo)知識與技能理解以兩角差的余弦公式為基礎(chǔ)過程與方法推導(dǎo)兩角和、差正弦和正切公式的方法情感態(tài)度價值觀體會三角恒等變換特點的過程,理解推導(dǎo)過程,掌握其應(yīng)用重點兩角和、差正弦和正切公式的推導(dǎo)過程及運用難點兩角和與差正弦、余弦和正切公式的
【總結(jié)】課題兩角和與差的正弦、余弦、正切公式(一)教學(xué)目標(biāo)知識與技能理解以兩角差的余弦公式為基礎(chǔ),推導(dǎo)兩角和、差正弦和正切公式的方法過程與方法體會三角恒等變換特點的過程,理解推導(dǎo)過程,掌握其應(yīng)用情感態(tài)度價值觀聯(lián)想觀察分析靈活運用公式重點兩角和、差正弦和正切公式的推導(dǎo)過程及運用難點兩角和與差正弦
【總結(jié)】"【志鴻全優(yōu)設(shè)計】2021-2021學(xué)年高中數(shù)學(xué)正切函數(shù)的圖像與性質(zhì)課后訓(xùn)練北師大版必修4"1.關(guān)于正切函數(shù)y=tanx,下列判斷不正確的是().A.是奇函數(shù)B.在定義域內(nèi)無最大值和最小值C.在整個定義域上是增加的D.平行于x軸的直線被正切曲線各支所截線段相等2.函數(shù)f(x)=x-t
2024-12-03 03:15
【總結(jié)】兩角和差的正弦余弦正切公式練習(xí)題知識梳理1.兩角和與差的正弦、余弦和正切公式sin(α±β)=sin_αcos_β±cos_αsin_β.cos(α?β)=cos_αcos_β±sin_αsin_β.tan(α±β)=.2.二倍角的正弦、余弦、正切公式sin2α=2sin_αcos_α.cos2α=cos2α-
2025-06-23 16:45
【總結(jié)】第三章三角恒等變換兩角和與差的正弦、余弦和正切公式兩角和與差的正弦、余弦、正切公式(一)1.能根據(jù)兩角差的余弦公式推導(dǎo)出兩角和與差的正弦公式及兩角和的余弦公式,并能利用公式進行化簡求值.(重點)2.熟練掌握兩角和與差的正弦、余弦公式的特征和符號規(guī)律.(易混點)3.能正用、逆用、變形用公式進行化簡求值.
2024-12-04 18:51