【總結(jié)】第二章一、選擇題1.若a·c=b·c(c≠0),則()A.a(chǎn)=bB.a(chǎn)≠bC.|a|=|b|D.a(chǎn)在c方向上的正射影的數(shù)量與b在c方向上的正射影的數(shù)量必相等[答案]D[解析]∵a·c=b·c,∴|a|·|c|cos&
2024-11-27 23:43
【總結(jié)】平面向量的坐標(biāo)表示與運算OxyijaA(x,y)a1.以原點O為起點作,點A的位置由誰確定?aOA?由a唯一確定2.點A的坐標(biāo)與向量a的坐標(biāo)的關(guān)系?兩者相同向量a坐標(biāo)(x,y)一一對應(yīng)復(fù)習(xí)回顧已知
2024-11-18 12:09
【總結(jié)】一、選擇題1.(2021·重慶高一檢測)已知α=67π,則α的終邊在()A.第一象限B.第二象限C.第三象限D(zhuǎn).第四象限【解析】α=67π∈(π2,π),∴α的終邊在第二象限.【答案】B2.時鐘的分針在1點到3點20分這段時間里轉(zhuǎn)過的弧度數(shù)為()
2024-11-27 23:51
【總結(jié)】第二章一、選擇題1.已知數(shù)軸上A點坐標(biāo)為-5,AB=-7,則B點坐標(biāo)是()A.-2B.2C.12D.-12[答案]D[解析]∵xA=-5,AB=-7,∴xB-xA=-7,∴xB=-12.2.設(shè)a與b是兩個不共線的向量,且向量a+λb與-(b
2024-11-27 23:46
【總結(jié)】一、選擇題1.已知sinα=-13,-π2<α<0,則α等于()A.π-arcsin(-13)B.π+arcsin(-13)C.a(chǎn)rcsin(-13)D.-arcsin(-13)【解析】-π2<α<0,sinα=-13,所以α=arcsin(-13).【答案】C
2024-11-27 23:47
【總結(jié)】自學(xué)目標(biāo)1、掌握平行向量基本定理;2、掌握軸上向量的座標(biāo)及其運算。學(xué)習(xí)過程[來源:.Com]一、課前準(zhǔn)備(預(yù)習(xí)教材77頁~79頁,找出疑惑之處)二、新課導(dǎo)學(xué)1、向量共線的條件2、平行向量基本定理:3、單位向量:4、軸上向量的座標(biāo)及其運算:①已知軸l,取單位向
【總結(jié)】§向量的減法(課前預(yù)習(xí)案)班級:___姓名:________編寫:一、新知導(dǎo)學(xué)1、如果把兩個向量的始點放在一起,則這兩個向量的差是以為起點,為終點的向量。2、一個向量BA等于它的終點相對于點O的位置向量___減去它的始點相對于點O的位置向量___,或簡記為
2024-11-18 16:44
【總結(jié)】撰稿教師:李麗麗學(xué)習(xí)目標(biāo)1、理解平面向量的正交分解。聯(lián)系直角坐標(biāo)系,研究向量正交分解的坐標(biāo)運算。2、會用坐標(biāo)表示平面向量的加法、減與數(shù)乘運算。學(xué)習(xí)過程一、課前準(zhǔn)備(預(yù)習(xí)教材99頁~102頁,找出疑惑之處)二、新課導(dǎo)學(xué)(一)向量的正交分解1、如果兩個向量的基線互相垂直,則稱這兩個向量,
【總結(jié)】一、選擇題1.已知函數(shù)y=cosx(x∈R),下面結(jié)論錯誤的個數(shù)是()①函數(shù)f(x)的最小正周期為2π;②函數(shù)f(x)在區(qū)間[0,π2]上是增函數(shù);③函數(shù)f(x)的圖象關(guān)于直線x=0對稱;④函數(shù)f(x)是奇函數(shù).A.0B.1C.2D.3【解析】余弦函數(shù)的最小正周期是
【總結(jié)】一、選擇題1.函數(shù)y=sin(-x),x∈[0,2π]的簡圖是()【解析】∵y=sin(-x)=-sinx,由五點法知應(yīng)選B.【答案】B2.函數(shù)y=2sinx-3的定義域是()A.[π6,5π6]B.[π6+2kπ,5π6+2kπ](k∈Z)C.[π3,2π3]
【總結(jié)】教學(xué)設(shè)計一、課前延伸預(yù)習(xí)檢測:判斷下列命題是否正確(1)向量AB與向量CD平行,則向量AB與向量CD方向相同或相反。()(2)向量AB與向量CD是共線向量則A、B、C、D四點必在一條直線上。()(3)若干個向量首尾相連,形成封閉圖形則這些向量的和等于零向量。()
【總結(jié)】雙基達(dá)標(biāo)?限時20分鐘?1.已知A(3,1),B(2,-1),則BA→的坐標(biāo)是().A.(-2,-1)B.(2,1)C.(1,2)D.(-1,-2)解析BA→=(3,1)-(2,-1)=(3-2,1+1)=(1,2).答案
【總結(jié)】2020/12/25平面向量數(shù)量積運算律2020/12/25規(guī)定:零向量與任意向量的數(shù)量積為0,即0.??0a1OBba向量叫做向量在向量上的正射影已知兩個非零向量a和b,它們的夾角為?,我們把數(shù)量
2024-11-18 12:10
【總結(jié)】向量數(shù)量積的運算律復(fù)習(xí)回顧正射影的數(shù)量cosla??(內(nèi)積)cos,??ababa·b=:(1).a?b?a?b=0(2).a?a=|a|2或aaa??||(3).cos?=||||baba?范圍0≤〈a,b〉≤π;平面
【總結(jié)】課題向量共線的條件課型新授課時1時間第4周主備人教研組長包組領(lǐng)導(dǎo)編號教學(xué)目標(biāo)、單位向量、軸上的坐標(biāo)公式、數(shù)軸上的兩點間的距離公式;;教學(xué)內(nèi)容教學(xué)設(shè)計課前預(yù)習(xí)案知識鏈接:1.若有向量a?(a??0)、b?,實數(shù)λ,使b?=λ