【總結(jié)】①?gòu)?fù)數(shù)的分類(lèi)a+bi?????實(shí)數(shù)(b=0)虛數(shù)(b≠0)?????純虛數(shù)(a=0)非純虛數(shù)(a≠0)②處理有關(guān)復(fù)數(shù)概念的問(wèn)題,首先可找準(zhǔn)復(fù)數(shù)的實(shí)部與虛部(若復(fù)數(shù)為非標(biāo)準(zhǔn)代數(shù)形式,則應(yīng)通過(guò)代數(shù)運(yùn)算化為代數(shù)形式)
2024-11-17 23:14
【總結(jié)】1.4生活中的優(yōu)化問(wèn)題舉例能利用導(dǎo)數(shù)知識(shí)解決實(shí)際生活中的最優(yōu)化問(wèn)題.本節(jié)重點(diǎn):利用導(dǎo)數(shù)知識(shí)解決實(shí)際中的最優(yōu)化問(wèn)題.本節(jié)難點(diǎn):將實(shí)際問(wèn)題轉(zhuǎn)化為數(shù)學(xué)問(wèn)題,建立函數(shù)模型.1.解決實(shí)際應(yīng)用問(wèn)題時(shí),要把問(wèn)題中所涉及的幾個(gè)變量轉(zhuǎn)化成函數(shù)關(guān)系式,這需要通過(guò)分析、聯(lián)想、抽象和轉(zhuǎn)
2024-11-17 23:15
【總結(jié)】1.導(dǎo)數(shù)的概念對(duì)于函數(shù)y=f(x),如果自變量x在x0處有增量Δx,那么函數(shù)y相應(yīng)地有增量Δy=f(x0+Δx)-f(x0),比值ΔyΔx就叫做函數(shù)y=f(x)從x0到x0+Δx的平均變化率,即ΔyΔx=
2024-11-17 19:03
【總結(jié)】3.2復(fù)數(shù)代數(shù)形式的四則運(yùn)算3.復(fù)數(shù)代數(shù)形式的加減運(yùn)算及其幾何意義掌握復(fù)數(shù)加法、減法的運(yùn)算法則及其幾何意義,并能熟練地運(yùn)用法則解決相關(guān)的問(wèn)題.本節(jié)重點(diǎn):復(fù)數(shù)代數(shù)形式的加減法.本節(jié)難點(diǎn):復(fù)數(shù)代數(shù)形式加減法的幾何意義.1.復(fù)數(shù)代數(shù)形式的加、減法運(yùn)算法則設(shè)z1=a+bi,z2=c+di(a、b、
2024-11-17 17:04
【總結(jié)】1.導(dǎo)數(shù)的概念1.知道函數(shù)的瞬時(shí)變化率的概念,理解導(dǎo)數(shù)的概念.2.能利用導(dǎo)數(shù)的定義求函數(shù)的導(dǎo)數(shù).本節(jié)重點(diǎn):導(dǎo)數(shù)的定義.本節(jié)難點(diǎn):用導(dǎo)數(shù)的定義求函數(shù)的導(dǎo)數(shù).對(duì)導(dǎo)數(shù)的定義要注意:第一:Δx是自變量x在x0處的改變量,所以Δx可正可負(fù),但Δx≠
【總結(jié)】1.了解復(fù)合函數(shù)的定義,并能寫(xiě)出簡(jiǎn)單函數(shù)的復(fù)合過(guò)程;2.掌握復(fù)合函數(shù)的求導(dǎo)方法,并運(yùn)用求導(dǎo)方法求簡(jiǎn)單的復(fù)合函數(shù)的導(dǎo)數(shù).本節(jié)重點(diǎn):①導(dǎo)數(shù)公式和導(dǎo)數(shù)運(yùn)算法則的應(yīng)用.②復(fù)合函數(shù)的導(dǎo)數(shù).本節(jié)難點(diǎn):復(fù)合函數(shù)的求導(dǎo)方法.復(fù)合函數(shù)的概念一般地,對(duì)于兩個(gè)函數(shù)y=f(u)和
【總結(jié)】命題【學(xué)習(xí)目標(biāo)】1.理解什么是命題,會(huì)判斷一個(gè)命題的真假.2.分清命題的條件和結(jié)論,能將命題寫(xiě)成“若p,則q”的形式.【自主學(xué)習(xí)】研讀教材,回答下列問(wèn)題::.從命題定義中可以看出,命題具備的兩個(gè)基本條件是:
2024-11-19 23:25
【總結(jié)】理解類(lèi)比推理概念,能利用類(lèi)比推理的方法進(jìn)行簡(jiǎn)單的推理,體會(huì)并認(rèn)識(shí)合情推理在數(shù)學(xué)發(fā)現(xiàn)中的作用.本節(jié)重點(diǎn):類(lèi)比推理.本節(jié)難點(diǎn):類(lèi)比推理的特點(diǎn)及應(yīng)用.1.類(lèi)比推理由兩類(lèi)對(duì)象具有某些特征和其中一類(lèi)對(duì)象的某些,推出另一類(lèi)對(duì)象也具有這些特征的推理稱為類(lèi)比推理(簡(jiǎn)稱類(lèi)比).簡(jiǎn)言之,類(lèi)比推理是由到
2024-11-17 23:20
【總結(jié)】1.基本初等函數(shù)的導(dǎo)數(shù)公式及導(dǎo)數(shù)的運(yùn)算法則1.熟記基本初等函數(shù)的導(dǎo)數(shù)公式,理解導(dǎo)數(shù)的四則運(yùn)算法則.2.能利用導(dǎo)數(shù)的四則運(yùn)算法則和導(dǎo)數(shù)公式,求簡(jiǎn)單函數(shù)的導(dǎo)數(shù).本節(jié)重點(diǎn):導(dǎo)數(shù)公式和導(dǎo)數(shù)的運(yùn)算法則及其應(yīng)用.本節(jié)難點(diǎn):導(dǎo)數(shù)公式和運(yùn)算法則的應(yīng)用.1.基本初等函數(shù)的導(dǎo)數(shù)公式
【總結(jié)】§演繹推理小明是一名高二年級(jí)的學(xué)生,17歲,迷戀上網(wǎng)絡(luò),沉迷于虛擬的世界當(dāng)中。由于每月的零花錢(qián)不夠用,便向親戚要錢(qián),但這仍然滿足不了需求,于是就產(chǎn)生了歹念,強(qiáng)行向路人搶取錢(qián)財(cái)。但小明卻說(shuō)我是未成年人而且就搶了50元,這應(yīng)該不會(huì)很?chē)?yán)重吧???情景創(chuàng)設(shè)1:生活中的例子如果你是法官,你會(huì)如何判決呢?小明到底是不是犯
2024-11-18 01:21
【總結(jié)】云南省曲靖市麒麟?yún)^(qū)第七中學(xué)高中數(shù)學(xué)線面垂直學(xué)案新人教A版必修2【學(xué)習(xí)目標(biāo)】1.了解直線與平面垂直的定義;2.理解并掌握直線與平面垂直的判定;3.會(huì)求直線與平面所成角?!緦W(xué)習(xí)重點(diǎn)】直線與平面垂直的判定、直線與平面所成角?!緦W(xué)習(xí)難點(diǎn)】定義既體現(xiàn)判定又體現(xiàn)性質(zhì)、空間角到平面角的轉(zhuǎn)化思想。【問(wèn)題導(dǎo)學(xué)】
2024-12-05 06:43
【總結(jié)】云南省曲靖市麒麟?yún)^(qū)第七中學(xué)高中數(shù)學(xué)面面垂直學(xué)案新人教A版必修2【學(xué)習(xí)目標(biāo)】了解平面與平面垂直的定義;理解并掌握平面與平面垂直的判定;3.會(huì)求二面角?!緦W(xué)習(xí)重點(diǎn)】平面與平面垂直的判定、平面與平面所成的二面角?!緦W(xué)習(xí)難點(diǎn)】定義既體現(xiàn)判定又體現(xiàn)性質(zhì)、空間角到平面角的轉(zhuǎn)化思想?!締?wèn)題導(dǎo)學(xué)】
【總結(jié)】高中新課標(biāo)選修(2-2)推理與證明綜合測(cè)試題一、選擇題1.分析法是從要證明的結(jié)論出發(fā),逐步尋求使結(jié)論成立的( ?。粒浞謼l件 B.必要條件 C.充要條件 D.等價(jià)條件答案:A 2.結(jié)論為:能被整除,令驗(yàn)證結(jié)論是否正確,得到此結(jié)論成立的條件可以為( ?。粒? B.且 C.為正奇數(shù) D.為正偶數(shù)答案:C3.在中,,則一定是(
2025-06-07 23:07
【總結(jié)】1.導(dǎo)數(shù)的幾何意義理解導(dǎo)數(shù)的幾何意義,會(huì)求曲線的切線方程.本節(jié)重點(diǎn):導(dǎo)數(shù)的幾何意義及曲線的切線方程.本節(jié)難點(diǎn):求曲線在某點(diǎn)處的切線方程.1.深刻理解“函數(shù)在一點(diǎn)處的導(dǎo)數(shù)”、“導(dǎo)函數(shù)”、“導(dǎo)數(shù)”的區(qū)別與聯(lián)系(1)函數(shù)在一點(diǎn)處的導(dǎo)數(shù)f′(x0)是
【總結(jié)】選修2-21.1變化率與導(dǎo)數(shù)1.變化率問(wèn)題1.通過(guò)實(shí)例了解平均變化率的概念.2.會(huì)求一些簡(jiǎn)單函數(shù)的平均變化率.本節(jié)重點(diǎn):函數(shù)的平均變化率的概念.本節(jié)難點(diǎn):函數(shù)平均變化率的求法.1.Δx是自變量x在x0處的改變量,它可以為正,也可以為負(fù),但不能等于零,而