【總結(jié)】導(dǎo)數(shù)在研究函數(shù)中的應(yīng)用(2)孫學(xué)軍aby=f(x)xoyy=f(x)xoyabf'(x)0f'(x)0復(fù)習(xí):函數(shù)單調(diào)性與導(dǎo)數(shù)關(guān)系如果在某個(gè)區(qū)間內(nèi)恒有,則為常數(shù).0)(??xf)(xf設(shè)函數(shù)y=f(x)在
2024-11-18 15:25
【總結(jié)】變化率問題一個(gè)變量相對(duì)于另一個(gè)變量的變化而變化的快慢程度叫做變化率.問題1氣球膨脹率我們都吹過氣球回憶一下吹氣球的過程,可以發(fā)現(xiàn),隨著氣球內(nèi)空氣容量的增加,氣球的半徑增加越來越慢.從數(shù)學(xué)角度,如何描述這種現(xiàn)象呢?問題1氣球膨脹率
2024-11-18 12:13
【總結(jié)】定義:函數(shù)y=f(x)在x=x0處的瞬時(shí)變化率是0000()()li.mlimxxfxxfxyxx???????????,|)(00xxyxf???或00000()()()limlim.xxfxxfxyfxxx????
【總結(jié)】導(dǎo)數(shù)的概念2121f(x)-f(x)y=xx-x11f(x+x)-f(x)=x復(fù)習(xí)割線AB的斜率3、在高臺(tái)跳水運(yùn)動(dòng)中,運(yùn)動(dòng)員相對(duì)于水面的高度h(單位:米)與起跳后的時(shí)間t(單位:秒)存在函數(shù)關(guān)系h(t)=++10.
2024-11-17 12:02
【總結(jié)】楚水實(shí)驗(yàn)學(xué)校高二數(shù)學(xué)備課組數(shù)學(xué)歸納法(二)復(fù)習(xí)回顧:什么是數(shù)學(xué)歸納法?如果(1)當(dāng)n取第一個(gè)值n0時(shí)結(jié)論正確;(2)假設(shè)當(dāng)n=k(k∈N+,且k≥n0)時(shí)結(jié)論正確,證明當(dāng)n=k+1時(shí)結(jié)論也正確.那么,命題對(duì)于從n0開始的所有正整數(shù)n都成立數(shù)學(xué)歸納法公理··
【總結(jié)】知識(shí)回顧:由某類事物的部分對(duì)象具有某些特征,推出該類事物的全部對(duì)象都具有這些特征的推理,或者由個(gè)別事實(shí)概栝出一般結(jié)論的推理,稱為歸納推理.(簡(jiǎn)稱歸納)2、歸納推理的一般模式:S1具有P,S2具有P,……Sn具有P,(S1,S2,…,Sn是A類事物的對(duì)象)所以A類事物具有P1、什
2024-11-17 17:55
【總結(jié)】1.1.2導(dǎo)數(shù)的概念一.創(chuàng)設(shè)情景(一)平均變化率(二)探究:在高臺(tái)跳水運(yùn)動(dòng)中,平均速度不能反映他在這段時(shí)間里運(yùn)動(dòng)狀態(tài),需要用瞬時(shí)速度描述運(yùn)動(dòng)狀態(tài)。我們把物體在某一時(shí)刻的速度稱為瞬時(shí)速度.又如何求瞬時(shí)速度呢????,?,.).tan(.,時(shí)的瞬時(shí)速度是多少比如
【總結(jié)】一、知識(shí)回顧:由某類事物的部分對(duì)象具有某些特征,推出該類事物的全部對(duì)象都具有這些特征的推理,或者由個(gè)別事實(shí)概栝出一般結(jié)論的推理,稱為歸納推理.(簡(jiǎn)稱歸納)2、類比推理:1、歸納推理:由兩類對(duì)象具有某些類似特征和其中一類對(duì)象的某些已知特征,推出另一類對(duì)象也具有這些特征的推理稱為類比推理(簡(jiǎn)稱類比
2024-11-18 01:22
【總結(jié)】山東省泰安市肥城市第三中學(xué)高中數(shù)學(xué)導(dǎo)數(shù)學(xué)案2新人教A版選修2-2學(xué)習(xí)內(nèi)容學(xué)習(xí)指導(dǎo)即時(shí)感悟【學(xué)習(xí)目標(biāo)】1.掌握導(dǎo)數(shù)的概念,導(dǎo)數(shù)公式及計(jì)算,導(dǎo)數(shù)在函數(shù)中的應(yīng)用。能夠用導(dǎo)數(shù)解決生活中的優(yōu)化問題。2.掌握定積分的概念,微積分基本定理及定積分的應(yīng)用。【學(xué)習(xí)重點(diǎn)】導(dǎo)數(shù)在研究函數(shù)中的應(yīng)用。【學(xué)習(xí)難點(diǎn)】導(dǎo)數(shù)在研究函數(shù)中
2024-11-19 20:37
【總結(jié)】§學(xué)習(xí)目標(biāo);奎屯王新敞新疆一、預(yù)習(xí)與反饋(預(yù)習(xí)教材P22~P26,找出疑惑之處)復(fù)習(xí)1:以前,我們用定義來判斷函數(shù)的單調(diào)性.對(duì)于任意的兩個(gè)數(shù)x1,x2∈I,且當(dāng)x1<x2時(shí),都有,那么函數(shù)f(x)就是區(qū)間I上的函數(shù).復(fù)習(xí)2:'C?
2024-11-30 14:35
【總結(jié)】12???,?,.).tan(.,時(shí)的瞬時(shí)速度是多少比如度呢如何求運(yùn)動(dòng)員的瞬時(shí)速那么度在某時(shí)刻的瞬時(shí)速她他度不一定能反映運(yùn)動(dòng)員的平均速的速度稱為我們把物體在某一時(shí)刻是不同的度運(yùn)動(dòng)員在不同時(shí)刻的速在高臺(tái)跳水運(yùn)動(dòng)中2?tvelociyeousins瞬時(shí)速度????.,,,.,;,
2024-11-17 20:06
【總結(jié)】1.2.2基本初等函數(shù)的導(dǎo)數(shù)及導(dǎo)數(shù)的運(yùn)算法則(1)一、教學(xué)目標(biāo):掌握八個(gè)函數(shù)求導(dǎo)法則及導(dǎo)數(shù)的運(yùn)算法則并能簡(jiǎn)單運(yùn)用.二、教學(xué)重點(diǎn):應(yīng)用八個(gè)函數(shù)導(dǎo)數(shù)求復(fù)雜函數(shù)的導(dǎo)數(shù)..教學(xué)難點(diǎn):商求導(dǎo)法則的理解與應(yīng)用.三、教學(xué)過程:(一)新課1.P14面基本初等函數(shù)的導(dǎo)數(shù)公式(見教材)2.導(dǎo)數(shù)運(yùn)算法則:(1).和(或差)的導(dǎo)數(shù)
2024-11-20 03:14
【總結(jié)】導(dǎo)數(shù)及其應(yīng)用第一章導(dǎo)數(shù)的運(yùn)算第1課時(shí)常數(shù)函數(shù)與冪函數(shù)的導(dǎo)數(shù)第一章課堂典例探究2課時(shí)作業(yè)3課前自主預(yù)習(xí)1課前自主預(yù)習(xí)凡事皆有規(guī)律,導(dǎo)數(shù)也不例外,導(dǎo)數(shù)應(yīng)用很廣泛,可是用定義求導(dǎo)卻比較復(fù)雜.本節(jié)將學(xué)習(xí)基本初等函數(shù)的導(dǎo)數(shù)公式,熟記基本初等函數(shù)的導(dǎo)數(shù)公式,可以讓我們?cè)诮鉀Q導(dǎo)數(shù)問題時(shí)得心應(yīng)手
【總結(jié)】湖南省邵陽市隆回二中選修2-2學(xué)案導(dǎo)數(shù)及其應(yīng)用:1.1.2導(dǎo)數(shù)的概念導(dǎo)學(xué)案【學(xué)習(xí)目標(biāo)】1.了解瞬時(shí)速度、瞬時(shí)變化率的概念;2.理解導(dǎo)數(shù)的概念,知道瞬時(shí)變化率就是導(dǎo)數(shù),體會(huì)導(dǎo)數(shù)的思想及其內(nèi)涵;3.會(huì)求函數(shù)在某點(diǎn)的導(dǎo)數(shù)?!咀灾鲗W(xué)習(xí)】(認(rèn)真自學(xué)課本P4-6)探究一:瞬時(shí)速度:?jiǎn)栴}1:我們把物體在某一時(shí)刻的
2024-11-19 20:35
【總結(jié)】生活中的優(yōu)化問題舉例生活中經(jīng)常遇到求利潤(rùn)最大、用料最省、效率最高等問題,這些問題通常稱為優(yōu)化問題,通過前面的學(xué)習(xí),知道,導(dǎo)數(shù)是求函數(shù)最大(小)值的有力工具,本節(jié)我們運(yùn)用導(dǎo)數(shù),解決一些生活中的優(yōu)化問題。問題1:海報(bào)版面尺寸的設(shè)計(jì)dmx128128)2128)(4()(????xxxs學(xué)?;虬嗉?jí)舉
2024-11-17 23:49