【總結(jié)】不等式的性質(zhì)素材?一.復(fù)習(xí)?不等式的基本原理及含義?a-b0ab?a-b=0a=b?a-bab?四大作用:?(1)比較兩個實數(shù)的大小,(2)推導(dǎo)不等式的性質(zhì)
2024-11-18 12:09
【總結(jié)】四川省成都市石室中學(xué)高中數(shù)學(xué)基本不等式2教案新人教A版必修5以培養(yǎng)學(xué)生探究精神為出發(fā)點,著眼于知識的生成和發(fā)展,著眼于學(xué)生的學(xué)習(xí)體驗,設(shè)置問題,由淺入深、循序漸進(jìn),給不同層次的學(xué)生提供思考、創(chuàng)造和成功的機會。特進(jìn)行如下教學(xué)設(shè)計:(一)設(shè)問激疑,創(chuàng)設(shè)情景展示北京召開的第24屆國際數(shù)學(xué)家大會的會標(biāo),讓學(xué)生思考,圖案由哪些幾何圖形
2024-11-19 16:13
【總結(jié)】:2baab??復(fù)習(xí)引入1.基本不等式:;)(2,,)1(22”號時取“當(dāng)當(dāng)且僅那么如果?????baabbaRba復(fù)習(xí)引入1.基本不等式:;)(2,,)1(22”號時取“當(dāng)當(dāng)且僅那么如果?????baabbaRba;)(2,,)2
2024-11-18 08:51
【總結(jié)】第2課時基本不等式的應(yīng)用1.復(fù)習(xí)鞏固基本不等式.2.能利用基本不等式求函數(shù)的最值,并會解決有關(guān)的實際應(yīng)用問題.121.重要不等式a2+b2≥2ab(1)證明:課本應(yīng)用了圖形間的面積關(guān)系推導(dǎo)出了a2+b2≥2ab,也可用分析法證明如下:要證明a2+b
2024-11-18 08:10
【總結(jié)】課時作業(yè)18 不等式的實際應(yīng)用時間:45分鐘 滿分:100分課堂訓(xùn)練1.某工廠第一年產(chǎn)量為A,第二年產(chǎn)量的增長率為a,第三年的增長率為b,這兩年的平均增長率為x,則( )A.x= B.x≤C.x D.x≥【答案】 B【解析】 由題設(shè)有A(1+a)(1+b)=A(1+x)2,即x=-1≤-1=.2.設(shè)產(chǎn)品的總成本y(萬元)與產(chǎn)量x(臺)
2025-06-24 19:24
2024-11-18 08:48
【總結(jié)】第一頁,編輯于星期六:點三十六分。,第一課時基本不等式,第二頁,編輯于星期六:點三十六分。,,登高攬勝拓界展懷,課前自主學(xué)習(xí),第三頁,編輯于星期六:點三十六分。,第四頁,編輯于星期六:點三十六分。,第...
2024-10-22 19:00
2024-10-22 19:01
【總結(jié)】書山有路勤為徑,學(xué)海無崖苦作舟少小不學(xué)習(xí),老來徒傷悲成功=艱苦的勞動+正確的方法+少談空話天才就是百分之一的靈感,百分之九十九的汗水!天才在于勤奮,努力才能成功!\復(fù)習(xí):?比較法是證明不等式的一種最基本、最重要的方法,用比較法證明不
2025-01-16 03:10
【總結(jié)】基本不等式A組基礎(chǔ)鞏固1.若x0,y0,且2x+8y=1,則xy有()A.最大值64B.最小值164C.最小值12D.最小值64解析:xy=xy??????2x+8y=2y+8x≥22y·8x=8xy,∴xy≥8,即xy≥64,當(dāng)且僅當(dāng)???
2024-12-08 20:20
【總結(jié)】高次不等式和分式不等式的解法一.高次不等式的解法對于不等式(x-a1)(x-a2)(x-an)0的解法是穿根標(biāo)線法a1a2an例1解下列不等式:(1)(x+1)(x-1)(x-2)0(2)x(x-1)2(x+1)3(x+2)0(3)(x-3)(x
2025-03-13 05:16
【總結(jié)】基本不等式請嘗試用四個全等的直角三角形拼成一個“風(fēng)車”圖案?趙爽弦圖a2+b2≥2ab?該結(jié)論成立的條件是什么?若a,b∈R,那么?形的角度?數(shù)的角度a2+b2-2ab=(a-b)2≥0a0,b0
2024-11-17 05:40
【總結(jié)】不等式應(yīng)用第一課時例O通往正西和東北方向的兩條主要公路,為了解決該市交通擁擠問題,市政府決定修建一條環(huán)城公路,分別在通往正西和東北方向的公路上選取A、B兩點,使環(huán)城公路在A、B間為直線段,要求AB路段與市中心O的距離為10公里,且使A、B間的距離|AB|最小,請你確定A、B兩點的最佳位置。(不要求作近似計算)
2024-10-19 08:40
【總結(jié)】§趙爽弦圖中國古代的數(shù)學(xué)家們不僅很早就發(fā)現(xiàn)并應(yīng)用勾股定理,而且很早就嘗試對勾股定理作理論的證明。最早對勾股定理進(jìn)行證明的,是三國時期吳國的數(shù)學(xué)家趙爽。趙爽創(chuàng)制了一幅“勾股圓方圖”,用形數(shù)結(jié)合得到方法,給出了勾股定理的詳細(xì)證明。在這幅“勾股圓方圖”中,以弦為邊長得到正方形A
2024-11-17 12:13
【總結(jié)】?復(fù)習(xí)??a-b0ab?a-b=0a=b?a-bab?:?(1)比較兩個實數(shù)的大小,(2)推導(dǎo)不等式的性質(zhì),(3)不等式的證明,(4)解不等式的主要依據(jù)?