【總結(jié)】《橢圓的簡(jiǎn)單幾何性質(zhì)》教學(xué)設(shè)計(jì)【教學(xué)目標(biāo)】:(1).使學(xué)生掌握橢圓的性質(zhì),能根據(jù)性質(zhì)正確地作出橢圓草圖;掌握橢圓中a、b、c的幾何意義及相互關(guān)系;(2)通過對(duì)橢圓標(biāo)準(zhǔn)方程的討論,使學(xué)生知道在解析幾何中是怎樣用代數(shù)方法研究曲線性質(zhì)的,逐步領(lǐng)會(huì)解析法(坐標(biāo)法)的思想。(3)能利用橢圓的性質(zhì)解決實(shí)際問題。:培養(yǎng)學(xué)生觀察、分析、抽象、概括的邏輯思維能力和運(yùn)用數(shù)形
2025-04-17 04:14
【總結(jié)】典型例題一例1橢圓的一個(gè)頂點(diǎn)為,其長(zhǎng)軸長(zhǎng)是短軸長(zhǎng)的2倍,求橢圓的標(biāo)準(zhǔn)方程.分析:題目沒有指出焦點(diǎn)的位置,要考慮兩種位置.解:(1)當(dāng)為長(zhǎng)軸端點(diǎn)時(shí),,,橢圓的標(biāo)準(zhǔn)方程為:;(2)當(dāng)為短軸端點(diǎn)時(shí),,,橢圓的標(biāo)準(zhǔn)方程為:;說明:橢圓的標(biāo)準(zhǔn)方程有兩個(gè),給出一個(gè)頂點(diǎn)的坐標(biāo)和對(duì)稱軸的位置,是不能確定橢圓的橫豎的,因而要考慮兩種情況.典型例題二例2一個(gè)
2025-03-25 04:50
【總結(jié)】出題人:李秋天陳繼波鄒玉超【學(xué)習(xí)目標(biāo)】1.熟練掌握橢圓的范圍,對(duì)稱性,頂點(diǎn)等簡(jiǎn)單幾何性質(zhì)2.掌握標(biāo)準(zhǔn)方程中的幾何意義,以及的相互關(guān)系3.理解、掌握坐標(biāo)法中根據(jù)曲線的方程研究曲線的幾何性質(zhì)的一般方法【學(xué)習(xí)重點(diǎn)】:橢圓的幾何性質(zhì)【學(xué)習(xí)難點(diǎn)】:如何貫徹
2025-07-24 04:51
【總結(jié)】導(dǎo)標(biāo):首先,請(qǐng)同學(xué)們回憶一下:1、橢圓的定義是什么?2、橢圓的標(biāo)準(zhǔn)方程是什么?3、對(duì)應(yīng)的橢圓圖形是怎樣?今天,我們將從橢圓的標(biāo)準(zhǔn)方程出發(fā),借助圖形來探求橢圓的一些幾何性質(zhì)。達(dá)標(biāo):一、橢圓的范圍oxy由11122222222?????b
2024-11-18 15:24
【總結(jié)】第二課時(shí)橢圓方程及性質(zhì)的應(yīng)用第二課時(shí)課堂互動(dòng)講練知能優(yōu)化訓(xùn)練課前自主學(xué)案學(xué)習(xí)目標(biāo)學(xué)習(xí)目標(biāo),體會(huì)一元二次方程的根與系數(shù)的關(guān)系的應(yīng)用.2.掌握橢圓的離心率的求法及其范圍的確定.3.掌握點(diǎn)與橢圓、直線與橢圓的位置關(guān)系,并能利用橢圓的有關(guān)性質(zhì)解決實(shí)際問題.課前自主學(xué)案溫故夯基
2024-11-12 18:11
【總結(jié)】質(zhì)D復(fù)習(xí)思考?橢圓的定義、標(biāo)準(zhǔn)方程是什么??平面上到兩個(gè)定點(diǎn)的距離的和(2a)等于定長(zhǎng)(大于|F1F2|)的點(diǎn)的軌跡叫橢圓。?定點(diǎn)F1、F2叫做橢圓的焦點(diǎn)。?兩焦點(diǎn)之間的距離叫做焦距(2C)。)0(12222????babyax)0(12222?
2025-07-25 14:44
【總結(jié)】橢圓的簡(jiǎn)單幾何性質(zhì)測(cè)試卷典型例題一例1橢圓的一個(gè)頂點(diǎn)為,其長(zhǎng)軸長(zhǎng)是短軸長(zhǎng)的2倍,求橢圓的標(biāo)準(zhǔn)方程.分析:題目沒有指出焦點(diǎn)的位置,要考慮兩種位置.解:(1)當(dāng)為長(zhǎng)軸端點(diǎn)時(shí),,,橢圓的標(biāo)準(zhǔn)方程為:;(2)當(dāng)為短軸端點(diǎn)時(shí),,,橢圓的標(biāo)準(zhǔn)方程為:;說明:橢圓的標(biāo)準(zhǔn)方程有兩個(gè),給出一個(gè)頂點(diǎn)的坐標(biāo)和對(duì)稱軸的位置,是不能確定橢圓的橫豎的,因而要考慮兩種情況.
2024-08-13 17:12
【總結(jié)】幾何性質(zhì)(二)1.橢圓的長(zhǎng)軸長(zhǎng)為,短軸長(zhǎng)為,半焦距為,離心率為,焦點(diǎn)坐標(biāo)為,頂點(diǎn)坐標(biāo)為.復(fù)習(xí)導(dǎo)入:81922??yx1.橢圓的長(zhǎng)軸長(zhǎng)為,短軸長(zhǎng)為,半焦距為,離心率為
2025-01-06 14:41
【總結(jié)】課時(shí)作業(yè)(八)一、選擇題1.(2015·人大附中月考)焦點(diǎn)在x軸上,短軸長(zhǎng)為8,離心率為的橢圓的標(biāo)準(zhǔn)方程是( )A.+=1 B.+=1C.+=1 D.+=1【解析】 本題考查橢圓的標(biāo)準(zhǔn)方程.由題意知2b=8,得b=4,所以b2=a2-c2=16,又e==,解得c=3,a=5,又焦點(diǎn)在x軸上,故橢圓的標(biāo)準(zhǔn)方程為+=1,故選C.【答案】 C2.
2025-03-25 04:51
【總結(jié)】橢圓的簡(jiǎn)單幾何性質(zhì)編寫:羅萬能審核:高二數(shù)學(xué)組一、教學(xué)目標(biāo):掌握橢圓的簡(jiǎn)單幾何性質(zhì),學(xué)會(huì)由橢圓的標(biāo)準(zhǔn)方程探索橢圓的簡(jiǎn)單幾何性質(zhì)的方法與步驟。:(1)通過探究,掌握橢圓的簡(jiǎn)單幾何性質(zhì),培養(yǎng)猜想能力,合情推理能力,養(yǎng)成發(fā)現(xiàn)問題,提出問題的意識(shí);(2)通過探究活動(dòng)培養(yǎng)學(xué)生觀察、發(fā)現(xiàn)、歸納的能力;培養(yǎng)分析、抽象、概括的能力,加強(qiáng)數(shù)形結(jié)合等數(shù)學(xué)思想的培
2025-04-17 12:00
【總結(jié)】復(fù)習(xí)::在同一平面內(nèi),到兩定點(diǎn)F1、F2的距離和為常數(shù)(大于|F1F2|)的點(diǎn)的軌跡叫做橢圓。:22221(0)xyabab????22221(0)yxabab????a,b,c的關(guān)系是:a2=b2+c2一、橢圓的范圍oxy由122
2025-01-19 22:19
【總結(jié)】雙曲線的性質(zhì)(二)關(guān)于x軸、y軸、原點(diǎn)對(duì)稱圖形方程范圍對(duì)稱性頂點(diǎn)離心率yxOA2B2A1B1..F1F2yB2A1A2B1xO..F2F1)0(1????babyax2222bybaxa??????
2024-11-17 13:00
【總結(jié)】標(biāo)準(zhǔn)方程圖象范圍對(duì)稱性頂點(diǎn)坐標(biāo)焦點(diǎn)坐標(biāo)半軸長(zhǎng)焦距a,b,c關(guān)系離心率22221(0)xyabab????22221(0)xyabba????關(guān)于x軸、y軸成
2025-07-25 11:30
【總結(jié)】學(xué)習(xí)目標(biāo)1、掌握橢圓的范圍、對(duì)稱性、頂點(diǎn)、離心率、理解a,b,c,e的幾何意義2、通過對(duì)橢圓標(biāo)準(zhǔn)方程的討論,理解在解析幾何中是怎樣用代數(shù)方法研究幾何問題的。3、初步利用橢圓的幾何性質(zhì)解決問題。學(xué)習(xí)重點(diǎn)與難點(diǎn)學(xué)習(xí)重點(diǎn):橢圓的幾何性質(zhì)學(xué)習(xí)難點(diǎn):橢圓的幾何性質(zhì)的探討以及a,b,c,e的關(guān)系復(fù)習(xí)舊知(1)橢圓的定義:
2025-04-17 04:40
【總結(jié)】2020/12/19拋物線的幾何性質(zhì)2020/12/19結(jié)合拋物線y2=2px(p0)的標(biāo)準(zhǔn)方程和圖形,探索其的幾何性質(zhì):(1)范圍(2)對(duì)稱性(3)頂點(diǎn)類比探索x≥0,y∈R關(guān)于x軸對(duì)稱,對(duì)稱軸又叫拋物線的軸.拋物線和它的軸的交點(diǎn).2020/12/19(4)離心率
2024-11-12 17:11